Выбери любимый жанр

Следующие 500 лет: Как подготовить человека к жизни на других планетах - Мэйсон Кристофер - Страница 2


Изменить размер шрифта:

2

Чтобы спасти жизнь, необходимо ее доработать. Кстати, люди уже неосознанно вмешиваются в развитие жизни и направляют эволюцию, пришло время делать это намеренно, видя в этом вектор и цель. Опираясь на уроки генетики, извлеченные из истории всех организмов, в течение миллиардов лет населявших Землю, мы разработали немало технологий, дающих такие возможности. Многие из них описаны в этой книге. Наша собственная ДНК несет в себе обрывочное наследие былой жизни и современный генетический материал, а также постоянно меняется в процессе непрерывной эволюции, ведущей в будущее.

По мере того как синтетическая биология и синтез ДНК становятся дешевле, мы начинаем мечтать даже о возрождении когда-то вымерших видов, а также представлять пути создания химерных или гибридных существ. Эти вопросы также рассматриваются в книге. Более того, изучение экстремофилов (организмов, существующих в крайне суровых экосистемах) позволяет выявлять новые способы адаптации к условиям, напоминающим инопланетные. Такие эксперименты уже ставят в лабораториях, например пытаются получать стабильные культуры клеток человека с генами тихоходок[1] и изучают их свойства. Такие технологии и новые методы должны помочь людям и другим организмам уцелеть в ранее совершенно непригодных для жизни условиях, в частности при запредельных уровнях радиации, давления или при экстремальных температурах.

Этот долг человечества – сохранить жизнь – столь же естественен, как деление клеток. В настоящий момент человечество столь же уязвимо, как одноклеточный эмбрион. Мы – эмбрион с грандиозным потенциалом, но пока находимся в самом начале развития и ограничены пределами своей родной планеты. Наш следующий шаг – переселение на одну из ближайших планет (например, на Марс) и ее освоение с целью заложить основы «запасного плана» для всего живого, включая человечество. Это станет моментом торжества, когда марсианские первопроходцы будут усталым взглядом провожать далекое солнце, садящееся за пыльный горизонт, и наблюдать голубоватые из-за дифракции света в тонкой марсианской атмосфере закатные лучи. Тогда мы наконец сможем считать своим домом не одну, а две планеты в пределах одной звездной системы.

Спустя десятилетия мы обживем многие небесные тела в пределах Солнечной системы. Технический прогресс и возможность проверять теории во множестве миров позволят нам собраться в первую межзвездную экспедицию примерно к 2500 г. Став межзвездным видом, мы фактически сможем перейти к освоению «резервной звездной системы», радикально снизив вероятность одновременного вымирания всего живого. Правда, здесь неизбежно возникают вопросы: сколько будет звезд, к которым мы отправимся? как их выбирать? насколько далеко мы готовы лететь? А будь у нас достаточно времени, хотелось бы ответить и на фундаментальные философские вопросы о бесконечном расширении или неизбежном коллапсе нашей Вселенной, ну и, конечно, предполагает ли широкое толкование нашего долга вмешательство в физическую структуру самой Вселенной. Эти вопросы также будут затронуты в данной книге.

Когда приходится решать, что лучше – искусственная жизнь или неизбежная смерть, выбор очевиден. Чтобы избежать вымирания, нам необходимо освоить инженерию в генетическом, клеточном, планетарном и межзвездном масштабе. Так мы сохраним человечество и прочие организмы, которые в следующей Вселенной могут и не возникнуть. Уникальный моральный долг нашего вида – это долг перед Вселенной и жизнью как она есть. Чтобы сберечь Вселенную, мы должны ее изменить.

Для этого необходим долгосрочный план. В этой книге мы рассмотрим первые 500 лет его реализации, поговорим, что нам известно из жизни бактерий, вирусов и целых планет, а также из опыта первых космонавтов и астронавтов, раздвигавших границы возможностей человека при освоении космоса.

1

Генетика и космонавтика: начало

340 дней к моей коже ничего не прикасалось… а сейчас любое прикосновение обжигает.

СКОТТ КЕЛЛИ,
астронавт

Мы находились в кольце мониторов, пестрящих молекулярными и генетическими данными, а также всевозможной телеметрией, – и все как один недоумевали и волновались. Просто глазам поверить не могли.

«Вы когда-нибудь видели, чтобы показатели у человека так зашкаливали? – спросил доктор Сем Мейдан. – Как он вообще выжил?»

Дело было морозным декабрьским вечером в Нью-Йорке, заканчивался 2017 г. Мы собрались в генетической лаборатории в Медицинском колледже Вейля при Корнеллском университете. Только что был закончен интегрированный анализ всех молекулярных данных (ДНК, РНК, белки, малые молекулы), взятых у капитана Скотта Келли, вернувшегося из самой долгой космической экспедиции в истории NASA. Он провел на орбите почти целый год (340 дней кряду). Долгосрочный космический полет Келли проводился в рамках уникального эксперимента NASA под названием Twins Study, в котором участвовали два астронавта, являющихся однояйцевыми близнецами, – Марк и Скотт Келли. Эксперимент должен был показать отличия состояний человеческого организма до, во время и после годичного космического полета. Эксперимент выполнялся с участием 10 исследовательских команд со всех уголков США. Наша лаборатория занималась анализом генетических, эпигенетических, микробиологических показателей, а еще мы изучали экспрессию генов. У нас были исчерпывающие молекулярные и генетические данные по результатам того времени, что Скотт провел в космосе, и мы могли сравнивать их с аналогичными данными Марка, остававшегося на Земле. Перед нами стояли следующие задачи: 1) оценить, что произошло со Скоттом за время столь долгого полета; 2) изучить изменения, чтобы в дальнейшем ориентироваться на них при подготовке пилотируемой экспедиции к Марсу; 3) спланировать, как снизить для других астронавтов те риски, которые будут выявлены.

Было ясно, что организму Скотта пришлось несладко и он был вынужден заново привыкать к вернувшемуся тяготению. Сам Скотт описал пережитые мытарства в книге «Стойкость: Мой год в космосе»[2]. «Лодыжки у меня распухли, как баскетбольные мячи, – отмечал он в удивительно спокойной манере, – хотелось только в больничку».

Несмотря на желание поскорее попасть в интенсивную терапию, ему была понятна причина таких перемен в организме: еще бы, он ведь только вернулся из космоса! Но иммунитету от этого понимания не легче. Скотт покрылся сыпью, страдал от зуда при прикосновении. Даже обычная одежда казалась ему тяжкой ношей, давящей под действием гравитации и вызывающей раздражение кожи. Мы судили об иммунном ответе по молекулярным показателям его анализов крови. Особенно заметно изменились белки и экспрессия генов (синтез РНК). Тем не менее все в изумлении глядели на мониторы… Может быть, такая реакция – это нормальная обратная адаптация к тяготению? Не придется ли из-за этого менять планы на экспедицию к Марсу?

«Это самые высокие уровни маркеров воспаления и цитокинового стресса, какие я видел, – сказал я, – надо бы еще раз проверить эти данные».

Мы провели проверку вместе с доктором Скоттом Смитом из NASA, который руководит отделом по биохимическому анализу состояния астронавтов (как наших близнецов, так и других), и он подтвердил, что все верно. А также добавил: «Это наивысшие значения, которые я когда-либо видел». Образцы обрабатывались в двух экземплярах для верности, и наши результаты совпали с расчетными. Хотя воспаление – одна из нормальных реакций организма на стресс, в случае капитана Келли возврат в земную гравитацию спровоцировал небывалый всплеск маркеров (рис. 1.1).

Следующие 500 лет: Как подготовить человека к жизни на других планетах - i_003.jpg

Рис. 1.1. Как показал эксперимент Twins Study, у братьев Келли значительно отличалась экспрессия многих цитокинов. Черным цветом показана экспрессия цитокинов у Скотта Келли, а серым – у его брата Марка, остававшегося на Земле. Пунктирными линиями отмечено, когда Скотт отправился на МКС и когда вернулся на Землю. Уровни цитокинов нормализованы по их медианной экспрессии для обоих братьев на всем протяжении полета. Таков, например, CXC-хемокин 5, играющий важную роль при ремоделировании тканей. Всплеск содержания других молекул наблюдался прежде всего по возвращении на Землю – это касается антагониста рецептора интерлейкина-1 (IL-ra1), C-реактивного белка (CRP), участвующего в воспалительных процессах, а также тиреотропного гормона (ТТГ).

2
Перейти на страницу:
Мир литературы