Великая Теорема Ферма - Аверьянова Н. Л. "Zenzen" - Страница 29
- Предыдущая
- 29/75
- Следующая
Еще один прорыв осуществил четырнадцатью годами спустя француз Габриель Ламе. Он внес некоторые остроумные усовершенствования в метод Жермен и доказал Великую теорему Ферма при простом значении n=7. Жермен показала специалистам по теории чисел, как исключить целую группу случаев с простыми значениями n, и теперь объединенными усилиями ее коллеги продолжали доказывать теорему для одного простого значения n за другим. Работа Жермен над Великой теоремой Ферма стала ее величайшим достижением в математике, хотя и не сразу оцененным по достоинству. Когда Жермен впервые написала Гауссу, ей не было еще и тридцати лет, и хотя ее имя приобрело известность в Париже, она опасалась, что великий математик не воспримет письмо от женщины всерьез. Чтобы защитить себя, Жермен снова укрылась за псевдонимом, подписав письмо именем месье Леблана.
Софи не скрывала своего благоговения перед Гауссом. Вот фраза из ее письма: «К сожалению, глубина моего интеллекта уступает ненасытности моего аппетита, и я сознаю все безрассудство своего поступка, когда беру на себя смелость побеспокоить гениального человека, не имея ни малейшего права на его внимание, кроме восхищения, которое неизбежно охватывает всех его читателей». Гаусс, не подозревая о том, кто в действительности его корреспондент, попытался успокоить «месье Леблана». В ответном письме Гаусса говорилось: «Я восхищен тем, что арифметика нашла в Вас столь способного друга».
Результаты, полученные Жермен, могли бы навсегда остаться ошибочно приписанными месье Леблану, если бы не император Наполеон. В 1806 году Наполеон захватил Пруссию, и французская армия штурмовала одну германскую столицу за другой. Жермен стала опасаться, как бы судьбу Архимеда не разделил ее второй великий герой — Гаусс. Софи написала своему другу — генералу Жозефу Мари Пернети, командовавшему наступавшими войсками. В письме она просила генерала обеспечить Гауссу безопасность. Генерал предпринял соответствующие меры, позаботился о немецком математике и объяснил ему, что тот обязан своей жизнью мадемуазель Жермен. Гаусс выразил свою признательность, но был удивлен, так как никогда не слышал о Софи Жермен.
Игра была проиграна. В следующем же письме Гауссу Жермен неохотно открыла свое подлинное имя. Ничуть не рассердившись за обман, Гаусс с восторгом ответил ей: «Как описать Вам тот восторг и то изумление, которые охватили меня при виде того, как мой высокочтимый корреспондент месье Леблан претерпел метаморфозу, превратившись в замечательную особу, подающую столь блестящий пример, что мне трудно в это поверить. Вкус к абстрактным наукам вообще, и прежде всего ко всем таинствам чисел, встречается крайне редко, и это не удивительно: прельстительные чары этой тонкой науки открываются только тем, кто имеет смелость глубоко проникнуть в нее. Но когда представительница того пола, который в соответствии с нашими обычаями и предрассудками, должен встретиться с бесконечно большими трудностями, чем мужчины, при ознакомлении с тернистыми исследованиями, умудряется успешно преодолеть все эти препятствия и проникнуть в их самые темные части, то, несомненно, она обладает благородным мужеством, совершенно необыкновенными талантами и высшей одаренностью. Ничто не смогло бы убедить меня столь лестным и несомненным образом в том, что привлекательные стороны этой науки, обогатившей мою жизнь таким количеством радостей, не являются плодом фантазии, как та преданность, которой Вы почтили ее».
Переписка с Карлом Гауссом, ставшая для Софи Жермен источником вдохновения в работе, внезапно оборвалась в 1808 году. Гаусс был назначен профессором астрономии в Гёттингенском университете, его интересы переместились от теории чисел к более прикладной математике, и он перестал отвечать на письма Жермен. Лишившись поддержки такого наставника, Жермен потеряла уверенность в своих силах и через год оставила занятия чистой математикой. Хотя ей не удалось продвинуться дальше в доказательстве Великой теоремы Ферма, она занялась весьма плодотворной деятельностью в области физики — научной дисциплины, в которой она снова могла бы занять выдающееся положение, если бы не предрассудки истеблишмента. Наивысшим достижением Софи Жермен в физике стал «Мемуар о колебаниях упругих пластин» — блестящая, полная новых идей работа, заложившая основы современной теории упругости. За эту работу и работы по Великой теореме Ферма она была удостоена медали Института Франции и стала первой женщиной, которая посещала лекции в Академии Наук, не будучи женой члена Академии. К концу жизни Софи Жермен восстановила отношения с Карлом Гауссом, убедившим Гёттингенский университет присудить ей почетную ученую степень. К сожалению, Софи Жермен умерла от рака груди прежде, чем университет смог оказать ей заслуженную почесть.
«Учитывая все сказанное, можно сказать, что Софи Жермен, по-видимому, обладала наиболее глубоким умом среди женщин, которых когда-либо производила Франция. Может показаться странным, но когда пришел чиновник, чтобы выдать свидетельство о смерти этой знаменитой коллеги и сотрудницы самых знаменитых членов Французской Академии Наук, в графе «род занятий» он обозначил ее как «одинокая женщина без профессии», а не «математик». Но это еще не все. При строительстве Эйфелевой башни инженеры уделяли особое внимание упругости используемых материалов, и на этом гигантском сооружении были начертаны имена семидесяти двух ученых, внесших особенно большой вклад в развитие теории упругости. Но тщетно мы стали бы искать в этом списке имя гениальной дочери Франции, чьи исследования во многом способствовали становлению теории упругости металлов — Софи Жермен. Была ли она исключена из этого списка по той же причине, по которой Мария Аньези не была удостоена членства в Французской Академии, — потому, что была женщиной? По-видимому, дело обстояло именно так. Но если это действительно так, то тем больший позор для тех, кто ответствен за такую вопиющую неблагодарность по отношению к человеку, имевшему столь большие заслуги перед наукой, — человеку, обеспечившему себе достойное место в зале славы». (А.Ж. Мозанс, 1913.)
Запечатанные конверты
После прогресса, достигнутого благодаря работам Софи Жермен, Французская Академия Наук установила серию премий, включая золотую медаль и 3000 франков, тому математику, который сумеет наконец разгадать тайну Великой теоремы Ферма. Того, кто сумеет доказать теорему, ждала не только заслуженная слава, но и значительное материальное вознаграждение. Салоны Парижа полнились слухами относительно того, какую стратегию избрал тот или иной претендент и как скоро объявят результаты конкурса. Наконец 1 марта 1847 года, Академия собралась на самое драматическое из своих заседаний.
В протоколах заседания подробно описывается, как Габриель Ламе, семью годами раньше доказавший Великую теорему Ферма для n=7, взошел на трибуну перед самыми знаменитыми математиками XIX века и заявил, что находится на пороге доказательства Великой теоремы Ферма для общего случая. Ламе признал, что его доказательство еще не полно, но он обрисовал в общих чертах свой метод и не без удовольствия сообщил, что через несколько недель опубликует полное доказательство в журнале, издаваемом Академией.
Аудитория замерла от восторга, но едва Ламе покинул трибуну как слова попросил еще один из лучших парижских математиков Огюстен Луи Коши. Обращаясь к членам Академии, Коши сообщил, что уже давно работает над доказательством Великой теоремы Ферма, исходя примерно из тех же идей, что и Ламе, и также вскоре намеревается опубликовать полное доказательство.
И Коши, и Ламе сознавали, что решающее значение имеет время. Тому, кто сумеет первым представить полное доказательство, достанется самая престижная и ценная награда в математике. Хотя ни Ламе, ни Коши не располагали полным доказательством, оба соперника страстно желали подкрепить свои заявления, и три недели спустя оба представили в Академию запечатанные конверты. В то время так было принято. Это позволяло математикам отстаивать свои приоритет, не раскрывая детали своей работы. Если впоследствии возникал спор относительности оригинальности идей, то в запечатанном конверте хранились убедительные подтверждения, необходимые для установления приоритета.
- Предыдущая
- 29/75
- Следующая