Выбери любимый жанр

Хранители времени. Реконструкция истории Вселенной атом за атомом - Хелфанд Дэвид - Страница 9


Изменить размер шрифта:

9

Хранители времени. Реконструкция истории Вселенной атом за атомом - img_8

Рис. 3.1. Кривые, отражающие распределение скоростей частиц воды при 0 °C и 100 °C. Поскольку ни одна частица не может двигаться медленнее 0 м/с, обе кривые усечены слева. Вертикали представляют средние скорости, которые из-за усечения оказываются немного выше самой распространенной. Обратите внимание, что средняя скорость частиц в кипящей воде составляет примерно 640 м/с, или 2300 км/ч (!), а некоторые движутся в несколько раз быстрее

Получается, что моя недавняя реплика – о том, что вы не «чувствуете» воздух, который вас окружает, пока вы сидите и читаете эти строки, – не совсем соответствует реальному положению дел. Вы чувствуете воздух, поскольку его температура определяет скорость, с которой его частицы ударяются о вашу кожу. Эта скорость может доходить до триллионов раз в секунду, и именно благодаря этому, в свою очередь, возникает испытываемое вами ощущение тепла, холода или «подходящей» температуры.

Эта модель также объясняет, как ваша посуда ухитряется высохнуть (то есть испарить все капельки воды, которые на ней находятся), когда вы оставляете ее просушиться на ночь, – даже несмотря на то, что температура в комнате (на что я очень надеюсь) никогда не достигает точки кипения воды (100 °C). В среднем скорость частиц воды на посуде равна скорости частиц в воздухе, поскольку они постоянно соударяются и уравновешивают свои энергии. Их средняя скорость намного меньше той, какая необходима, чтобы перевести частицу воды из жидкой формы в газообразную. Впрочем, не будем забывать, что существуют некоторые частички воды (и воздуха), которые движутся намного быстрее средних значений, и они могут достигать скорости высвобождения; именно эти стремительные частицы и теряет капля. Когда это происходит, средняя скорость частиц падает (если вычесть самые быстрые, то среднее значение понизится). Если бы на этом все и закончилось, то утром вам потребовалось бы полотенце для кухонной посуды. Но в вашей комнате – просторном хранилище воздушных частиц – все еще содержатся некоторые из быстрых частиц, и когда они соударяются с водой, оставшейся в капле, средняя скорость снова возрастает, и высокоскоростной конец распределения заполняется вновь (рис. 3.1). Эти молекулы воды, в свою очередь, тоже могут улетучиваться, и процесс продолжается до тех пор, пока вся жидкость не превратится в газ, благодаря чему утром вы сможете убрать с подставки сухую посуду.

Эта тепловая модель также объясняет, почему мы потеем. Наше тело так тонко настроено, что оно работает при температуре примерно в 37 °C, и любое отклонение от этой величины вызывает немедленный отклик. Если мы активно занимаемся спортивными упражнениями, то обращаем химическую энергию, запасенную в мышцах, в избыточное тепло, от которого телу необходимо избавиться. Один механизм, предназначенный для этого, задействует наши потовые железы, из-за чего на нашей коже появляются капельки воды. Частицы кожи, покачиваясь немного сверх меры – если говорить о том, как это «воспринимает» наше тело, – передают часть своей энергии частицам воды, заставляя самые быстрые улетучиваться и тем самым уносить энергию с кожи, остужая последнюю. При нанесении ацетона на кожу мы чувствуем холод, поскольку точка его кипения намного ниже, чем у воды (всего лишь 56 °C), поэтому при нормальной температуре тела многие из частиц ацетона начинают двигаться достаточно быстро и переходят в газообразную форму, унося с собой колебательную энергию ваших частиц и заставляя кожу почувствовать холод.

И абсолютно все, от того, почему остывает вода в ванной5, до того, почему земная атмосфера не падает вниз6 (подсказка: она падает), а также от того, почему нагревается ваш велосипедный насос7, до того, почему ваш кондиционер остужает комнату8, объясняется этой моделью, в которой температура представляет собой просто меру скорости движения частиц.

Те самые «частицы» – атомы и молекулы

Теперь настало время снова вернуться к изначальной теме главы. Нужно сказать, что до сих пор мы игнорировали все, что мы знаем о внутренней структуре атомов, и принимали древнегреческую идею, согласно которой каждое вещество обладает мельчайшей единицей – именно их я на протяжении всей нашей беседы именовал частицами. Но что именно собой представляют частицы, составляющие серебряную ложку или каплю воды? Демокрит и Левкипп утверждали, что они «неделимы» (напомню, от греческого atomos – «неразрезаемый») и существуют в бесконечном множестве размеров и форм, чем легко объяснялось наличие миллионов различных веществ, составляющих наш мир. Теперь нам известно, что обе гипотезы неверны. Атомы вовсе не обладают неделимостью, а миллионы веществ состоят из особых сочетаний девяноста четырех уникальных строительных блоков9.

То, что я называл «частицами», – это либо один из девяноста четырех типов таких единообразных блоков, которым мы, пренебрегая этимологией, присвоили имя «атомов», или одна из миллионов «молекул», четко определенных сочетаний, в которые атомы вступают друг с другом. Серебро – это один из девяноста четырех базовых «кирпичиков», и атомы Серебра, соединяясь, могут создать серебряную ложку. Вода – это сочетание двух базовых «кирпичиков», Водорода и Кислорода, которые в пропорции 2:1 формируют молекулу H2O.

Золото в ваших кольцах, Вольфрам в нити накала (если вы еще помните лампы накаливания) и Кремний в чипах вашего телефона – это примеры одного соответствующего из девяноста четырех базовых строительных блоков, которые мы в совокупности называем элементами (подробнее см. гл. 4). Выдыхаемый вами воздух, по большей части диоксид Углерода (CO2), алкоголь в вашем бокале (C2H6O) и песок, из которого был сделан этот бокал (SiO2), – это молекулы, объединенные в фиксированные сочетания и призванные создать неисчислимые сложные структуры, из которых и состоит наш мир. Молекулы могут оказаться очень непростыми: в одной только молекуле ДНК, составляющей первую человеческую хромосому, присутствуют тринадцать миллиардов атомов, и все они соединяются друг с другом, следуя точной закономерности, а она, в свою очередь, представляет собой часть кода, благодаря которому вы – это вы.

Разделить неделимое: строительные блоки атомов

Итак, мы уже отметили, что атомы, несмотря на происхождение термина, можно разделить. Они сделаны из более фундаментальных строительных блоков, подразделенных на два семейства – это лептоны и кварки. Их удерживают воедино четыре фундаментальных взаимодействия, которые передаются при помощи еще одного семейства частиц – бозонов. Если составить перечень всех лептонов и кварков, которые нам удалось открыть, вместе с их антиматериальными двойниками, и добавить к ним бозоны, переносящие взаимодействия, мы получим список из тридцати одной «фундаментальной» частицы10 – и это звучит так, будто они не слишком-то фундаментальны! Многие физики полагают, что нам необходимо спуститься еще на один уровень в строении вещества, и мы обнаружим, что все эти различные частицы – на самом деле проявления крошечных вибрирующих «струн»11. Но пока что наша модель для мельчайших величин, существующих в природе, насчитывает тридцать один объект, и впредь мы будем называть такие объекты фундаментальными частицами.

На рис. 3.2 показана иерархия вещества, начиная от общих состояний, о которых мы говорили в начале этой главы, – твердое тело, жидкость, газ – до молекул и атомов, а потом – от атомов до их составляющих частей. Кроме того, показано число сочетаний частиц на каждом уровне.

Хранители времени. Реконструкция истории Вселенной атом за атомом - img_9

Рис. 3.2. Строение вещества, начиная с чашки кофе, в которой присутствуют твердое тело, жидкость и газ, при этом все они состоят из молекул, а те, в свою очередь, созданы из особых сочетаний атомов, которые и сами состоят из более фундаментальных частиц. Число типов частиц на каждом уровне обозначено как n; обратите внимание, что четвертое состояние вещества (не показанное на рисунке) – это плазма, в которой атомы разрываются на части. Представлено лишь первое из трех поколений фермионов

9
Перейти на страницу:
Мир литературы