Сколько будет 2+2? - Елизаров Евгений Дмитриевич - Страница 31
- Предыдущая
- 31/36
- Следующая
Превращение одних элементов в другие путем деления тяжелых ядер или соединения легких в более тяжелые приводят к изменению энергии связи. При этих процессах масса получившихся ядер снова оказывается меньше исходных элементов. Ядра наиболее тяжелых атомов, которые стоят в конце Периодической системы, менее устойчивы, чем ядра элементов, расположенных в ее середине. Поэтому их удается расщепить, в результате чего образуются элементы с меньшими атомными весами. В свою очередь, ядра атомов, расположенных на противоположном полюсе системы элементов, выигрывают в устойчивости при их слиянии в более тяжелые. В том и в другом случае, то есть и при делении тяжелых, и при синтезе легких выделяется огромное количество энергии. Так, например, исследования показали, что «дефекту массы», равному 1 атомной единице массы (1/12 части массы изотопа углерода с массовым числом 12), отвечает энергия связи ядра, равная 931, 5037 МэВ.
Но, повторим, силы, которые связывают атомное ядро, действуют лишь на очень незначительных расстояниях. Между тем, кроме них, положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга.
В нормальных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы, преодолев электростатическое отталкивание, они могли сблизиться и вступить в ядерную реакцию. Однако отталкивание можно преодолеть «грубой» силой, например сталкивая ядра, обладающие высокой относительной скоростью. Дж. Кокрофт и Э. Уолтон использовали этот принцип в своих экспериментах, проводившихся в 1932 в Кавендишской лаборатории (Кембридж, Великобритания). Облучая литиевую мишень ускоренными в электрическом поле протонами, они наблюдали взаимодействие протонов с ядрами лития. С тех пор изучено большое число подобных реакций.
Приведем реакции с участием наиболее легких ядер – протона (p), дейтрона (d) и тритона (t), соответствующих изотопам водорода протию 1 H, дейтерию 2 H и тритию 3 H, – а также «легкого» изотопа гелия 3 He и двух изотопов лития 6 Li и 7 Li:
d + d – 3 He + n + 3, 25 МэВ
d + d – t + p + 4, 0 МэВ
t + d – 4 He + n + 17, 6 МэВ
3 He + d – 4 He + p + 18, 3 МэВ
6 Li + d – 24 He + 22, 4 МэВ
7 Li + p – 24 He + g + 17, 3 МэВ
Здесь n – нейтрон, g – гамма-квант. Энергия, выделяющаяся в каждой реакции, дана в миллионах электрон-вольт (МэВ). При кинетической энергии 1 МэВ скорость протона составляет 14 500 км/с.
«Недостающую» здесь массу, которая соответствует энергии связи атомного ядра (то есть «дефект массы»), можно определить из известного соотношения между энергией и массой, найденного Эйнштейном: w = mc2 .
Вообще говоря, взаимосвязь энергии с инерциальной массой впервые была открыта английским физиком Дж.Дж.Томсоном (1856–1944) еще за четверть века до Эйнштейна, в 1881 году. Им было установлено, что масса движущегося заряженного шара возрастает на величину, пропорциональную энергии электростатического поля. Однако коэффициент пропорциональности, полученный исследователем, составил 4/3 квадрата скорости света. Позднее, в 1900 году французский ученый Жюль Анри Пуанкаре (1854–1912) пришел к выводу, что для сохранения принципа равенства действия противодействию необходимо предположить существование у электромагнитного поля некоторой плотности массы, которая в с2 раз меньше плотности энергии поля. В 1904 году австрийский физик Ф.Газенёрль (1874–1915) показал, что электромагнитное излучение, заключенное в замкнутой полости с отражающими стенками, увеличивает массу системы на величину, равную произведению энергии излучения на 8/3с2 . Лишь в 1905 молодой Эйнштейн строго вывел сегодня известное всем соотношение e =mc2 для частного случая испускания телом плоских волн в двух противоположных направлениях. Этот же закон он предложил распространить на все виды энергии. Так что в действительности фундаментальный вывод о связи между энергией и массой не был внезапным наитием какого-то одного гения, но венчал долголетние усилия многих ученых.
И вот благодаря их поиску сегодня обнаруживается, что в результат, казалось бы, частного сложения совершенно незначительных, даже исчезающе малых, величин вовлекаются какие-то могущественные таинственные силы природы, и действие именно этих сил, которые мы отчасти сумели подчинить себе за прошедшие десятилетия, изменило облик всей нашей цивилизации. Мы вновь и вновь убеждаемся, что истина подобна линии горизонта: чем более широкие просторы открываются перед нами, тем дальше отодвигается она. Нам становится ясно, что результат простого математического действия далеко не однозначен и «два плюс два» оказываются равными «четырем» только в какой-то более широкой системе явлений, нежели непосредственное взаимодействие исходных слагаемых. Вне контекста самых фундаментальных физических законов этот результат, как оказывается, вообще не может быть осмыслен.
Схожую картину, заставляющую нас обращаться к куда более широкой действительности, нежели подлежащие непосредственному сложению величины, наблюдается и в химическом синтезе.
Так, например, в химии различают эндо – и экзотермические реакции. Эндотермическая (от греческого endon – внутри и therme – тепло) – это химическая реакция, при которой реагирующая система поглощает тепло из окружающей среды. В свою очередь, экзотермическая (от греч. exo – вне, снаружи и therme – тепло) представляет реакцию (например, горение), при которой, напротив, тепло выделяется из реагирующей системы в окружающую среду.
Существо этих реакций может быть понято из первого начала термодинамики. Первое начало, как известно, по существу выражает закон сохранения энергии. Поэтому для системы, окруженной замкнутой границей, через которую не происходит переноса вещества, справедливо соотношение:
U2 – U1 = Q – W,
где U1 и U2 – энергии системы в состояниях 1 и 2; Q – теплота, полученная от внешних источников; W – работа, совершенная системой над внешними телами в процессе, посредством которого система переходит из состояния 1 в состояние 2.
Если процесс – химическая реакция, то обычно ее проводят в таких условиях, чтобы можно было отделить энергию химического превращения от энергии, связанной с одновременными изменениями температуры или давления. Поэтому энергию (теплоту) химической реакции обычно определяют в условиях, в которых продукты находятся при тех же температуре и давлении, что и реагенты. Энергия химической реакции тогда определяется теплотой Q, полученной от окружающей cреды или переданной ей. Измерение Q может быть проведено с помощью калориметра подходящего типа или проведения в сосуде химической реакции, теплота которой известна.
Как показывает приведенное нами уравнение, внутренняя энергия реагирующей системы определяется не только количеством высвобожденной или поглощенной теплоты. Она также зависит от того, сколько энергии система затрачивает или приобретает посредством произведенной работы. При этом работа может совершаться как самой системой, так и над системой. (Кстати, о работе, которая производится самой системой, имеет вполне достаточное представление любой, кому доводилось разбавлять спирт до привычной русскому национальному вкусу концентрации: та теплая гадость, которая получается сразу после смешения – это именно ее результат.) Понятно, что термодинамика процессов в этих случаях будет существенно отличаться, и в первую очередь – знаком величин.
Даже там, где единая реакция распадается на несколько различных стадий, общая энергетика химического процесса обязана сойтись до «последней калории». Этот вывод был сделан Германом Ивановичем Гессом (1802–1850), российским химиком, одним из основоположников термохимии, в 1840 году на основе экспериментальных фактов еще до классических опытов Джоуля, которые продемонстрировали эквивалентность теплоты и других форм энергии. Г.И.Гесс доказал, что теплота химической реакции, протекающей через несколько последовательных стадий, равна алгебраической сумме теплот отдельных промежуточных реакций. Закон Гесса, как отметил Герман Л.Ф.Гельмгольц (1821–1894), великий немецкий ученый, который впервые в 1847 математически обосновал закон сохранения энергии и показал его всеобщий характер, служит прямым экспериментальным подтверждением применимости закона сохранения энергии к энергетике химических реакций.
- Предыдущая
- 31/36
- Следующая