Выбери любимый жанр

Дискретная математика без формул - Соловьев Александр - Страница 4


Изменить размер шрифта:

4

В детском садике дети играли в большом песочнике. Других развлечений в послевоенных садиках было мало. Берг нарисовал в песочнике два больших частично пересекавшихся круга, как это делают со свадебными кольцами на открытках и машинах. (Для тех, кто со свадьбами в жизни не сталкивался, скажем, что с похожим перехлестом рисуют олимпийские кольца).

Далее он сказал: «Пусть в левый круг встанут все, кто любит манную кашу, а в правый – все, кто любит сливовый кисель!». Дети были горазды поесть (послевоенное время голодное), поэтому никто не остался равнодушно стоять в стороне и все забежали в нарисованные круги. Об'единение всех этих маленьких сладкоежек и есть операция об'единения теории множеств.

Но, поскольку почти все дети встали в то место, где круги наложились друг на друга, из-за любви к каше и киселю одновременно, то тем самым продемонстрировали понимание физического смысла операции пересечения двух множеств.

«Ну вот! Не знаю как инженеры, а дети понимают смысл операций над множествами!»,– сказал Берг…

Кстати, здесь роль универсума играл весь песочник.

То, что нарисовал на песке Берг, называют сейчас диаграммами Эйлера-Венна. А то, что находилось на песке за пределами каждого из кругов, было дополнением соответствующего множества, то есть множеством элементов универсума, не принадлежащих к числу любителей данного кушанья (там находились Берг с журналистом).

Если рассмотреть внимательно студенческую группу ух-004, то об'единение множества отличников и спортсменов даст множество под названием «слава группы ух-004». Принципиальное отличие об'единения множеств от школьного сложения не только в том, что студенты – это не числа и мы их не пересчитываем(!), но и в том, что студенты, которые одновременно отличники и спортсмены, будут учтены один раз. Так что запросто может оказаться, что отличников четыре, а спортсменов двадцать, но их об'единение под названием «слава группы ух-004» будет содержать всего двадцать два студента.

Ясно, что пересечение этих множеств даст двух студентов, которые одновременно и отличники и спортсмены. Они, скорее всего, девушки, да еще и красавицы, но красота не использовалась здесь в качестве характеристики, по которой выделялись элементы этих множеств…

Когда у математиков появляются в руках об'екты, а у нас здесь раздолье – любые об'екты можно брать, и операции – а мы основную тройку тоже обозначили, то математики начинают говорить об АЛГЕБРЕ.

Алгебра множеств как небо и земля отличается от школьной, хотя есть некоторые аналогии. В алгебре множеств есть те же названия законов: КОММУТАТИВНЫЙ, АССОЦИАТИВНЫЙ и ДИСТРИБУТИВНЫЙ (перестановочный, сочетательный и распределительный). Первые два похожи как две капли воды, упавшие с неба на землю. А вот дистрибутивный закон имеет и аналог в школьной алгебре (выражаясь «по-школьному» произведение суммы есть сумма произведений), но имеет и уникальную версию. В теории множеств, если тоже сказать кратко, то пересечение с об'единением равно об'единению пересечений и (!) об'единение с пересечением равно пересечению об'единений. Второе не имеет аналогии в школьной алгебре:"Сумма с произведением не равна произведению сумм".

Проиллюстрируем сказанное:

Коммутативный закон: Об'единение (пересечение) отличников и спортсменов равно об'единеию (пересечению) спортсменов и отличников.

Ассоциативный закон: От изменения порядка об'единения (пересечения) спортсменов, отличников и красавцев результат не меняется.

Дистрибутивный закон (только экзотическая версия): Об'единение красавцев с пересечением спортсменов и отличников равно множеству, в котором пересекаются об'единения красавцев и спортсменов с об'единеием красавцев с отличниками. (В условных обозначениях это было бы гораздо короче и нагляднее, но мы зареклись насчет формул).

Сложновато воспринимается на слух закон поглощения, который, однако, в ряде случаев позволяет упрощать теоретико-множественные конструкции. Пересечение отличников с об'единением отличников и спортсменов дает множество отличников. Или второй вариант. Об'единение отличников с пересечением отличников и спортсменов дает множество отличников. Тем не мение, если обдумать сказанное, и поразмахивать руками, то справедливость результатов очевидна.

Есть еще закон, название которого почему-то студентов забавляет – он им, видимо, что то-напоминает. А закон этот смело можно отнести к самым важным законам (свойствам). Это закон ИДЕМПОТЕНТНОСТИ. Об'единение (пересечение) множества спортсменов с множеством спортсменов дает множество спортсменов.

Очень по-французски звучит ЗАКОН Де Моргана: Дополнение об'единения отличников со спортсменами равно пересечению дополнения множества спортсменов с дополнением множества отличников. И второй вариант. Дополнение пересечения отличников со спортсменами равно об'единению дополнения множества спортсменов с дополнением множества отличников. За универсум (для дополнения) можно взять множество студентов группы (или университета, или мира – роли не играет). Возьмите реальных спортсменов с отличниками и убедитесь в справедливости закона.

Очень прост закон ДВОЙНОГО ДОПОЛНЕНИЯ. Дополнение дополнения множества спортсменов есть само множество спортсменов. Персонально для тех, кто успешно продирается через всю нашу словесную казуистику, можем сформулировать ближайшее следствие из этого закона. Дополнение дополнения дополнения множества спортсменов есть дополнение множества спортсменов.

Самыми экзотическими являются два закона: ПРОТИВОРЕЧИЯ и ИСКЛЮЧЕННОГО ТРЕТЬЕГО.

Противоречия: Пересечение множества спортсменов с дополнением множества спортсменов пусто. Действительно, коль скоро в дополнение множества спортсменов входят все остальные студенты неспортсмены, то у этого пересечения не может быть общих элементов.

Исключенного третьего: Об'единение множества спортсменов с дополнением множества спортсменов совпадает с рассматриваемым универсумом. Действительно, коль скоро в дополнение множества спортсменов входят все остальные студенты неспортсмены из универсума, то это об'единение как раз и составляет весь универсум.

Остается только высказать сожаление, что не все математики согласны с этими законами. Еще большее сожаление вызывает то, что у них на это есть весьма веские основания… Не менее веские, чем у сторонников законов.

Несогласные себя называют КОНСТРУКТИВИСТАМИ или ИНТУИЦИОНИСТАМИ.

Согласным же ничего не осталось, как назвать самих себя КЛАССИКАМИ… С чем не согласны несогласные.

Лекция 4. СООТВЕТСТВИЯ, ОТОБРАЖЕНИЯ, ОТНОШЕНИЯ

Алгеброй далеко не исчерпывается все то, что можно сделать с множествами…

В математике, как и в жизни, различные об'екты могут чему-то соответствовать или не соответствовать. Находиться меж собой в определенных отношениях или наоборот – не находится. И основой формализации, если угодно – математизации, здесь также служат множества.

То есть между множествами могут устанавливаться различные СООТВЕТСТВИЯ и ОТНОШЕНИЯ. Более того (а серьезные математики может быть даже сказали бы «прежде всего»), множества нередко могут ОТОБРАЖАТЬСЯ друг в друг друга и даже в самих себя…

Человек может соответствовать профессии, зарплата соответствовать должности, наказание – преступлению, оценка – знаниям.

Глядя на многочисленные примеры вокруг мы замечаем, что для определения конкретного соответствия надо определить два множества: множество (область) определения и множество (область) значений. А также определить «пары соответствий». Например, область определения – группа ух-005, сдающая экзамен; область значений – отл, хор, уд, неуд – множество оценок. И множество пар Иванов – отл, Петров – хор, Сидоров – отл. А Хведоров – не явился. Вот вам и готовое соответствие.

4
Перейти на страницу:
Мир литературы