Выбери любимый жанр

Рассказы о математике с примерами на языках Python и C - Елисеев Дмитрий Сергеевич - Страница 3


Изменить размер шрифта:

3

100 * (a - c) - (a - c) = 100 * (a - c) - 100 + 90 + 10 - (a - c) = 100 * (a - c - 1) + 10 * 9 + (10 - a + c)

Мы узнали разряды числа, получающегося в результате:

a1 = a - c - 1, b1 = 9, c1 = 10 - a + c

‐ Добавляем число в обратном порядке:

a1b1c1 + c1b1a1 = 100 * (a - c - 1) + 10 * 9 + (10 - a + c) + 100* (10 - a + c) + 10 * 9 + a - c - 1

Если раскрыть все скобки и сократить лишнее, в остатке будет 1089.

3. Число Пи

Вобьем в стену гвоздь, привяжем к нему веревку с карандашом, начертим окружность. Как вычислить длину окружности? Сегодня ответ знает каждый школьник — с помощью числа Пи. Число Пи — несомненно, одна из основных констант мироздания, значение которой было известно еще в древности. Оно используется везде, от кройки и шитья до расчетов гармонических колебаний в физике и радиотехнике.

Сегодня достаточно нажать одну кнопку на калькуляторе, чтобы увидеть его значение: Pi = 3,1415926535… Однако, за этими цифрами скрывается многовековая история. Что такое число Пи? Это отношение длины окружности к ее диаметру. То что это константа, не зависящая от самой длины окружности, знали еще в древности. Но чему она равна? Есть ли у этого числа какая-то внутренняя структура, неизвестная закономерность? Узнать это хотели многие. Самый простой и очевидный способ — взять и измерить. Примерно так вероятно и поступали в древности, точность разумеется была невысокой. Еще в древнем Вавилоне значение числа Пи было известно как 25/8. Затем Архимед предложил первый математический метод вычисления числа Пи, с помощью расчета вписанных в круг многоугольников. Это позволяло вычислять значение не «напрямую», с циркулем и линейкой, а математически, что обеспечивало гораздо большую точность. И наконец в 3-м веке нашей эры китайский математик Лю Хуэй придумал первый итерационный алгоритм — алгоритм, в котором число вычисляется не одной формулой, а последовательностью шагов (итераций), где каждая последующая итерация увеличивает точность. С помощью своего метода Лю Хуэй получил Пи с точностью 5 знаков: π = 3,1416. Дальнейшее увеличение точности заняло сотни лет. Математик из Ирана Джамшид ибн Мас‘уд ибн Махмуд Гияс ад-Дин ал-Каши в 15-м веке вычислил число Пи с точностью до 16 знаков, а в 17-м веке голландский математик Лудольф вычислил 32 знака числа Пи. В 19-м веке англичанин Вильям Шенкс, потратив 20 лет, вычислил Пи до 707 знака, однако он так и не узнал, что в 520-м знаке допустил ошибку и все последние годы вычислений оказались напрасны (в итерационных алгоритмах хоть одна ошибка делает все дальнейшие шаги бесполезными).

Что мы знаем о числе Пи сегодня? Действительно, это число весьма интересно:

‐ Число Пи является иррациональным: оно не может быть выражено с помощью дроби вида m/n. Это было доказано только в 1761 году.

‐ Число Пи является трансцендентным: оно не является корнем какого-либо уравнения с целочисленными коэффициентами. Это было доказано в 1882 году.

‐ Число Пи является бесконечным.

‐ Интересное следствие предыдущего пункта: в числе Пи можно найти практически любое число, например свой собственный номер телефона, вопрос лишь в длине последовательности которую придется просмотреть. Можно подтвердить, что так и есть: скачав архив с 10 миллионами знаков числа Пи, я нашел в нем свой номер телефона, номер телефона квартиры где я родился, и номер телефона своей супруги. Но разумеется, никакой «магии» тут нет, лишь теория вероятности. Можно взять любую другую случайную последовательность чисел такой же длины, в ней также найдутся любые заданные числа.

И наконец, перейдем к формулам вычисления Пи, т. к. именно в них можно увидеть красоту числовых взаимосвязей — то, чем интересна математика.

Формула Лю-Хуэя (3й век):

Рассказы о математике с примерами на языках Python и C - img_2.jpeg

Формула Мадхавы-Лейбница (15 век):

Рассказы о математике с примерами на языках Python и C - img_3.jpeg

Формула Валлиса (17 век):

Рассказы о математике с примерами на языках Python и C - img_4.jpeg

Формула Мэчина (18 век):

Рассказы о математике с примерами на языках Python и C - img_5.png

Попробуем вычислить число Пи по второй формуле. Для этого напишем простую программу на языке Python:

sum = 0.0

sign = 1

for p in range(0,33):

    sum += 4.0 * sign / (1 + 2 * p)

    print(p, sum)

    sign = -sign

Запустим программу в любом онлайн-компиляторе языка Питон (например https://repl.it/languages/python3). Получаем результат:

Шаг  Значение

0    4.0

1    2.666666666666667

2    3.466666666666667

3    2.8952380952380956

4    3.3396825396825403

5    2.9760461760461765

6    3.2837384837384844

7    3.017071817071818

8    3.2523659347188767

9    3.0418396189294032

10   3.232315809405594

11   3.058402765927333

12   3.2184027659273333

13   3.0702546177791854

14   3.208185652261944

15   3.079153394197428

16   3.200365515409549

17   3.0860798011238346

18   3.1941879092319425

19   3.09162380666784

20   3.189184782277596

21   3.0961615264636424

22   3.1850504153525314

23   3.099944032373808

24   3.1815766854350325

25   3.1031453128860127

26   3.1786170109992202

27   3.1058897382719475

28   3.1760651768684385

29   3.108268566698947

30   3.1738423371907505

31   3.110350273698687

32   3.1718887352371485

Как можно видеть, сделав 32 шага алгоритма, мы получили лишь 2 точных знака. Видно, что алгоритм работает, но количество вычислений весьма велико. Как известно, в 15-м веке индийский астроном и математик Мадхава использовал более точную формулу, получив точность числа Пи в 11 знаков:

3
Перейти на страницу:
Мир литературы