Выбери любимый жанр

Разум побеждает: Рассказывают ученые - Барашенков Владилен Сергеевич - Страница 15


Изменить размер шрифта:

15

Но продолжим наше путешествие во времени, наш «прорыв» к Т-0[13], ко все более высоким плотностям и температурам. Здесь нас ожидают некоторые сюрпризы.

При Т=10-4 секунды плотность вещества уже «ядерная» — 1014 г/см3. Это означает, что Вселенная в тот момент еще находилась под властью квантовых законов. С достаточной строгостью мы можем считать такую раннюю Вселенную… громадным атомным ядром со всеми вытекающими из этого последствиями. Поистине удивительное торжество диалектики с ее законами перехода количества в качество! Поскольку общая теория относительности не учитывает квантовость, то вряд ли с ее помощью можно описать эту раннюю стадию.

А при еще более высоких плотностях квантовые законы играли, видимо, большую роль. Мы даже представить себе не можем, сколь необычны были проявления многоликой пространственно-временной сущности в тех условиях! Может быть, все наши современные физические понятия просто не имели тогда никакого смысла. Так что нельзя даже говорить о чудовищной «гравитационной» плотности, которую, возможно, имела Вселенная в самый момент Т-0. Теория пока дает нам умопомрачительную цифру: 4·1093 г/см3 — и ничего к ней не добавляет. Помочь тут не могут ни наши сегодняшние знания, ни здравый смысл…

Но разве Человек сделал уже свои самые последние шаги в глубины космоса и микромира?..

Нет! Он стоит ныне на перекрестке дорог, исчезающих в ночи. Пусть он мысленно «обрубил» бесконечности и знает, что в принципе эти дороги где-то кончаются. Но где? И сумеет ли он хоть когда-нибудь дойти туда? Попытаемся же приблизительно оценить количество максимально возможной информации во Вселенной и сравнить его с информационной мощностью человеческого мозга.

Согласно принципу Бреммермана, никакая система не может обработать информации больше чем 1,6×1047 бит/грамм-секунду. Для простоты предположим, что никакая система не может и выдать большей информации. Тогда, помножив это число Бреммермана на массу и возраст Вселенной, получим и ее информационную емкость: 1,6·1047 бит/грамм-секунду ×1058 грамм ×1018 секунд=10123 бит. Человеческий мозг в течение жизни способен переработать лишь 1014 бит, или 105 бит/секунду. Вывод из этих расчетов напрашивается недвусмысленный — Вселенная для человеческого разума неисчерпаема.

* * *

Великое единоборство смертного и слабого «мыслящего тростника» с вечной и неисчерпаемой природой — вот извечная задача ученого. Однако даже это реальное соотношение с бесконечным миром все же нисколько не может принизить Человека, как это пытается делать религия, постулируя его слабость и ничтожность перед богом и якобы сотворенным им миром. Ведь любой мифический бог и «божий мир», созданные человеческим воображением многие века тому назад — на ранних этапах познания, выглядят весьма примитивно по сравнению с тем, что сегодня Человек знает и делает, по сравнению с необъятным окружающим его реальным миром. Пусть необозримы бездны времени и пространства, все же люди исследуют и познают их. Именно своей дерзкой способностью осмыслить бесконечность, разумом и взглядом объять необозримое — вот чем силен и славен Человек…

В. Л. Гинзбург, академик, лауреат Ленинской премии

Новая картина мира

В начале 1973 г. широко отмечалось 500-летие со дня рождения знаменитого польского астронома Николая Коперника, опрокинувшего привычную для той эпохи картину мира. Коперниковское учение противоречило религиозному мировоззрению, согласно которому в центре Вселенной находится Земля, а Солнце, Луна и звезды вращаются вокруг Земли.

Несколько десятилетий шли споры вокруг «безумной» гипотезы Коперника. Но вот в начале XVII в. произошла величайшая революция в наблюдательных средствах астрономии: был изобретен или, точнее, начал применяться Галилеем телескоп. Наблюдения неба, сделанные с помощью телескопа, быстро подтвердили правоту Коперника (достаточно упомянуть об открытии спутников Юпитера, вращающихся вокруг этой планеты). Идея гелиоцентризма победила, а накопление данных о небесных светилах стало происходить нарастающими темпами.

До начала XX в. теоретической базой для объяснения физических явлений, происходящих во всех частях Вселенной, служила механика Ньютона с ее важнейшими принципами: независимостью пространства и времени от «наполняющего» Вселенную вещества и возможностью изучать движение небесных тел, используя в качестве привилегированной системы отсчета неподвижный мировой эфир, наполняющий все мировое пространство.

Примерно 60 лет назад выяснилось, однако, что принципы ньютонианской физики должны быть заменены при описании картины мира принципами специальной и общей теории относительности: никакой абсолютной (привилегированной) системы отсчета не существует, пространство и время понятия в известном смысле относительные, гравитация тесно связана со свойствами пространства, модель Вселенной, построенная на основе новых теоретических принципов физики, глубоко отличается от Вселенной Коперника, Галилея, Кеплера и Ньютона, не говоря уже о наивных представлениях седой древности, аккумулированных в библейских легендах.

Ко всему этому в 50-х и 60-х годах нашего века произошла вторая революция в развитии наблюдательной астрономии. Радиотелескопы, рентгеновские телескопы, зарождающиеся методы нейтринной астрономии, разработка аппаратуры для обнаружения гравитационных волн, экспериментальная проверка выводов из теории относительности, обнаружение целого ряда необычных астрономических объектов и явлений (квазаров, пульсаров, реликтового излучения) — все это поставило перед современными астрофизиками задачи, имеющие огромное мировоззренческое значение. Надо было объяснить вновь обнаруженные явления и то, что было известно астрономам раньше, с позиций единой физической теории и построить такую модель Вселенной, которая и соответствовала бы тому, что мы наблюдаем сейчас в окружающем нас пространстве, и отражала бы длительную эволюцию планет, звезд, галактик, всей Метагалактики.

Уже исходя из общих соображений, можно было заключить, что такая модель окажется несовместимой со многими привычными представлениями о строении мира и о «природе вещей», поскольку они, эти привычные представления, соответствуют законам механики Ньютона. Новая же модель должна учитывать эффекты теории относительности, которые становятся ощутимыми при скоростях, близких к скорости света, и при плотностях вещества, превышающих в миллиарды раз плотность воды.

В начале 20-х годов советский физик А. А. Фридман показал путем теоретических расчетов, что статическая релятивистская модель строения Вселенной, предложенная А. Эйнштейном в 1917 г., является лишь одной из огромного числа возможных моделей, и вполне вероятно, что наша Вселенная непрерывно расширяется. Через несколько лет расширение Вселенной было доказано: об этом свидетельствует так называемое красное смещение спектральных линий в спектрах далеких от нас галактик. Картина такова: галактики как бы разбегаются в пространстве, возникнув 10–20 миллиардов лет назад из сгустка вещества колоссальной плотности.

Состояние вещества и ход физических процессов, сами понятия о времени и пространстве в «ранний» период эволюции Вселенной, когда плотность была грандиозна, еще недостаточно ясны и, вероятно, существенно отличаются от понятий физики сегодняшнего дня. Здесь нас ждет много нового, быть может, совсем необычного.

Но качественные изменения во Вселенной происходили не только в далеком прошлом. Имеются теоретические предположения, что при определенных условиях эволюция звезд приводит к образованию так называемых «черных дыр». Поле тяжести у поверхности этих дыр так велико, что силы гравитации «сковывают» в этой части пространства все виды лучистой энергии, в том числе и свет. Поэтому эти массивные звезды становятся невидимыми, если только на них не падает вещество извне. Выяснение того, как при этом все же обнаружить «черные дыры», является одной из интереснейших задач современной астрофизики.

15
Перейти на страницу:
Мир литературы