Выбери любимый жанр

Анаболизм с инсулином II - Буланов Юрий Б. - Страница 2


Изменить размер шрифта:

2

Регуляция синтеза и секреции инсулина принципиально отличается от регуляции синтеза и секреции других гормонов. Поэтому-то он и не вызывает привыкания. Причины отсутствия привыкания будут рассмотрены ниже.

Существуют инсулинозависимые ткани, которые получают глюкозу «инсулиновым путем», и инсулинонезависимые ткани, которые утилизируют глюкозу без участия инсулина. Типичным примером инсулинонезависимых тканей являются нервная, хрящевая, костная ткани и некоторые другие. Инсулин, однако, оказывает косвенное воздействие на обеспечение этих тканей глюкозой. Если из-за введения слишком большой дозы инсулина уровень сахара упадет слишком сильно, мозг погибает так как при сильном дефиците глюкозы он не получит ее никаким путем: не инсулиновым не внеинсулиновым.

Глава 3. Молекулярная биология инсулина и углеводная реакция

Инсулин — это полипептидный гормон, состоящий из длинной цепочки аминокислот, разделенной дисульфидным мостиком на пептиды. Как видим, молекула инсулина не «тянет» на звание белковой молекулы, т. к. белковые молекулы состоят уже из нескольких полипептидных цепочек. В В-клетках инсулин образуется из своего предшественника — проинсулина. В чистом кристаллическом виде инсулин был получен еще в 1922 г. из поджелудочных желез крупного рогатого скота. Выпускается он из них и по сей день. Существуют 2 формы инсулина. Одна из них реагирует с мышечной и жировой тканью, а другая только с жировой. Во всех препаратах инсулина эти 2 формы находятся в комбинации друг с другом.[1] Одновременное действие этих 2 форм инсулина приводит к тому, что инсулин идет по трем метаболическим путям. Один из них — это белковый, а два других пути — жировые. Поэтому если действие инсулина на организм не модулировать определенным образом, его применение будет давать 1/3 мышечной массы и 2/3 массы жировой. Используя определенные способы модуляции действия инсулина, мы можем добиться того, чтобы он давал прирост мышечной массы на 3/4 и прирост жировой ткани только на 1/4. Это трудно, но возможно. О способах такой модуляции разговор еще впереди.

Основную роль инсулин играет именно в углеводном обмене. Поэтому попробуем рассмотреть его несколько подробнее. Углеводы (глюкоза) играют основную роль в энергообеспечении организма. Почему? Ведь жиры, например, при окислении дают энергии более чем в 2 раза больше, чей углеводы. Однако углеводы намного легче (благодаря тому же инсулину) проникают внутрь клетки и намного легче окисляются. На втором месте по легкости окисления вслед за глюкозой стоят аминокислоты. И лишь на последнем месте стоят жирные кислоты и глицерин — продукты распада подкожно-жировой клетчатки. Они плохо проникают в клетку, окисляются с трудом да и вообще никогда не окисляются полностью.

Глюкоза очень легко мобилизуется из гликогеновых депо и так же легко включается в энергетический обмен. Скорость включения в энергетический обмен и наибольшая полнота окисления — это преимущество глюкозы перед аминокислотами и жирными кислотами.

Сложные углеводы, которые мы потребляем с пищей, сначала расщепляются в желудочно-кишечном тракте до глюкозы, которая уже потом включается в углеводный обмен.

Глюкоза сама по себе не может проникнуть внутрь клетки без участия инсулина. Некоторые органы способны усваивать глюкозу внеинсулиновым путем. Так, например, усваивают глюкозу головной мозг, печень, хрусталик глаза. Однако от инсулина зависит общий уровень глюкозы в крови. Если этот уровень слишком низок, то это сказывается и на энергообеспечении вышеуказанных органов. Внеинсулиновым путем усваивают глюкозы эритроциты крови, но и здесь в результате влияния на общий уровень глюкозы инсулин косвенным образом регулирует энергоснабжение эритроцитов. Поскольку эритроциты переносят кислород, отсюда прослеживается опосредованное влияние инсулина на кислородное обеспечение всех внутренних органов нашего организма. Печень в большей степени усваивает глюкозу инсулиновым путем. Хотя частичная внеинсулиповая утилизация глюкозы тоже имеет место. Это связано с тем, что в печени инсулин идет не только на энергообеспечение клеток, но также и на синтез гликогена. Усиление инсулинового пути обеспечения печени глюкозой одновременно усиливает и внеинсулиновый путь, ведь в печени синтезируется большинство ферментов, в том числе и ферменты углеводного обмена. Надо отметить, что мозг все-таки более независим от инсулина, чем печень и другие внутренние органы. Его потребность в инсулине достаточно мала, и это при том, что в течение суток мозговая ткань поглощает не менее 100–150 (!) г глюкозы.

Мышечная ткань усваивает глюкозу исключительно инсулиновым путем. Это связано не только с особенностями энергоснабжения мышечной ткани, но и с накоплением в ней гликогена.

Помимо глюкозы есть много других энергетических субстратов (веществ), которыми «питаются» внутренние органы, и в утилизации которых принимает участие инсулин.

В нормальных физиологических условиях внутри целостного организма самым сильным стимулятором секреции инсулина поджелудочной железой является глюкоза. Повышение содержания глюкозы в крови вызывает увеличение секреции инсулина панкреатическими островками. Снижение ее, наоборот, замедляет секрецию инсулина. Таким образом, содержание в крови инсулина регулируется по типу отрицательной обратной связи, и главным регулятором является глюкоза. Усиление секреции инсулина может быть вызвано также жирными кислотами, глицерином, аминокислотами, пептидами и некоторыми белками, но все-таки в меньшей степени, чем глюкозой. Эти вещества в основном усиливают стимулирующее действие глюкозы на панкреатические островки.

Регуляция синтеза и секреции инсулина принципиально отличается от регуляции синтеза и секреции других гормонов тем, что основным регулятором работы поджелудочной железы является сама глюкоза. Такой тип регуляции называется субстратной регуляцией от слова «субстрат», т. е. вещество. Регуляторами секреции и синтеза других гормонов являются тропные гормоны гипофиза. Такая регуляция называется тропной.

Схематично субстратная регуляция может выглядеть следующим образом:

Анаболизм с инсулином II - _01.jpg

Гипоталамус — это центр чувствительности среднего мозга. В этом центре происходит переключение химических сигналов на нервные и наоборот, нервных сигналов на химические. Глюкоза, поступающая в кровь, сразу же попадает в гипоталамус. Будучи в данном случае основным регуляторным центром, гипоталамус тут же посылает регуляторные сигналы в поджелудочную железу. Эти сигналы идут по нервным путям (в основном это блуждающий нерв). Одни волокна блуждающего нерва (симпатические) вызывают выброс в кровь инсулина, уже имеющегося в поджелудочной железе. Другие волокна блуждающего нерва(парасимпатические) передают сигналы, вызывающие одновременно как выброс в кровь инсулина, так и усиление синтеза инсулина в поджелудочной железе.

Сама по себе поджелудочная железа также воспринимает сигналы от глюкозы, находящейся в крови, и в ответ на эти сигналы увеличивает выброс в кровь инсулина. Все виды регуляции в организмы продублированы, иногда даже не однократно, а многократно. Регуляция содержания глюкозы в крови не является в этом плане исключением.

Сигналы из гипоталамуса и сигналы от глюкозы воспринимаются β—адренорецепторами В-клеток поджелудочной железы. β-адренорецепторы находятся на наружной мембране клеток. Воспринимая сигнал, они запускают синтез особого фермента «аденилатциклазы», который приводит к накоплению внутри клетки ц-АМФ (циклического аденозин-монофосфата). ц-АМФ является внутриклеточным посредником внешних регуляторных сигналов. Внутри клетки она запускает цепь необходимых биохимических реакций, которые и приводят к конечному результату.

Инсулин, в отличие от стероидных гормонов, сам по себе в изолированном виде внутрь клеток проникать не может. Вначале он воздействует на инсулиновые рецепторы клеток-мишеней. Инсулиновые рецепторы имеются только на мембранах клеток инсулинозависимых тканей. Передача гормонального сигнала внутри клетки осуществляется с помощью все той же вездесущей ц-АМФ. Инсулин соединяется с ц — АМФ в комплекс и в виде такого комплекса проникает внутрь клетки, где и осуществляет все необходимые реакции.

2
Перейти на страницу:
Мир литературы