До предела чисел. Эйлер. Математический анализ - Коллектив авторов - Страница 11
- Предыдущая
- 11/26
- Следующая
Недавно я нашел, и совсем неожиданно, изящное выражение для суммы ряда, зависящего от квадратуры круга... А именно, шестикратную сумму этого ряда равной квадрату периметра круга, диаметр которого 1.
Эйлер
Решение Базельской задачи стало неожиданностью для научного сообщества, и новость об этом разлетелась по свету. Мир в то время был довольно небольшим, мир образованных людей — еще меньше, а способы сообщения, кроме почты, труднодоступны.
Эйлер подготовил почву для решения, проведя предварительные вычисления и прочие операции. Например, сначала он использовал промежуточные суммы, как в методе Эйлера — Маклорена, чтобы получить более точное число, чем 1,64. Благодаря своему уму Эйлер нашел шесть точных цифр, и его отправной точкой стало число:
1 + 1/22 + 1/32 + 1/42 + ... = 1,644934.
С другой стороны, от Эйлера, для которого возводить в различные степени число л было обычным делом и обладавшего необыкновенной памятью, не могло ускользнуть, что 1,644934 очень похоже на π2/6. Следовательно, мы можем предположить, что, вступая на этот тернистый путь, Эйлер уже знал, к чему он придет. Ни один его современник не обладал таким преимуществом. Гениальность Эйлера позволила ему обойтись без сложения около 3000 членов исходного ряда.
БАЗЕЛЬСКАЯ ЗАДАЧА: КОНЕЦ
Решив Базельскую задачу, Эйлер не остановился на достигнутом. Вернемся к дзета-функции из предыдущей главы:
ξ(x) = 1 + 1/2x + 1/3x + 1/4x + ... + 1/nx + ...
При х - 1 мы получаем гармонический ряд, а при х - 2 — ряд из Базельской задачи. Эйлер углубил этот вопрос и на основе своих размышлений над Базельской задачей получил следующие выражения для ряда степеней:
ξ(4) = 1 + 1/24 + 1/34 + 1/44 + ... + 1/n4 + ... = π4/90
ξ(6) = 1 + 1/26 + 1/36 + 1/46 + ... + 1/n6 + ... = π6/945
ξ(8) = 1 + 1/28 + 1/38 + 1/48 + ... + 1/n8 + ... = π8/9450
ξ(10) = 1 + 1/210 + 1/310 + 1/410 + ... + 1/n10 + ... = π10/93555
до ξ(26) со все более сложными формулами, где n всегда стояло в степени л, соответствующей ξ(n). В 1739 году Эйлер пришел к общему выражению:
ξ(2n) = (-1)n+1 (2π)2nB2n/2·(2n)!,
в котором содержались числа Вк, числа Бернулли (о них мы поговорим в главе 4). Постепенно они становятся все больше и ими все труднее оперировать; для примера достаточно записать пятидесятый член:
ξ(50) = 39 604 576 419 286 371866 998 202π60/285 258 771457 546 764 463 363 635 252 374 414183 254 363 234 375
ПЕРВАЯ КОМПЬЮТЕРНАЯ ПРОГРАММА В ИСТОРИИ
Ада Байрон (1815-1852), впоследствии вышедшая замуж за Уильяма Кинга и ставшая известной как Ада Кинг, графиня Лавлейс, была дочерью лорда Байрона. Однако она никогда не знала отца, поскольку родители развелись меньше чем через месяц после ее рождения. Аде ничто не мешало развивать математические способности, так как ее мать считала математику мощным противоядием от возможных склонностей к литературе: глубокая ненависть к бывшему мужу и его работе сопровождала ее всю жизнь. Главную роль в научной деятельности Ады сыграл знаменитый математик Чарльз Бэббидж (1791-1871), создатель первого компьютера в истории. Ада же сделала для этой машины рекурсивный алгоритм, который позволял вычислять числа Бернулли. С точки зрения информатики процедура, придуманная Адой, является самой настоящей компьютерной программой, первой в истории. В 1980-х годах министерство обороны США в честь женщины-ученого дало имя АДА универсальному языку программирования по стандарту MIL-STD-1815 (номер соответствует году рождения Ады).
Вычислительная машина Чарльза Бэбиджа, для которой Ада Кинг создала программу для вычислений чисел Бернулли.
Действительно, первое программное обеспечение в истории (то есть первая программа для автоматических вычислений компьютером) находило числа Бернулли рекурсивным методом. Его создала Августа Ада Кинг, графиня Лавлейс, в 1843 году для механического компьютера Чарльза Бэббиджа, и оно действительно оказалось безупречным с точки зрения информатики. Нечетные значения ξ(n) очень трудно вычислить, и даже сегодня над ними продолжают работать. Очевидно, что первое из них совпадает с гармоническим рядом
ξ(1) = 1 + 1/2 + 1/3 + ... = ∞.
Третье число, иррациональное, было названо постоянной Апери:
ξ(3) = 1 + 1/23 + 1/33 + 1/43 + ... + 1/n3 + ... = 1,2020569...
Эйлер сделал еще один шаг вперед, фактически в будущее. Он еще больше углубился в изучение дзета-функций и, следовательно, в область простых чисел, преобразовывая бесконечную сумму своей функции ξ(n) в результат, включающий простые числа. Желающие могут проследить за рассуждениями Эйлера более подробно в приложении 3.
МОСТЫ КЕНИГСБЕРГА
В начале 1735 года Эйлер серьезно заболел. Из источников, которыми мы располагаем, невозможно установить природу этой болезни, мы знаем только, что у него поднялась такая высокая температура, что он находился между жизнью и смертью. После выздоровления Эйлера поздравил от себя и от имени математиков всего мира Даниил Бернулли, признавшись: "Никто уже не надеялся, что он поправится". После этого случая у Эйлера ухудшилось зрение на правом глазу, а три года спустя он полностью на него ослеп. Тем не менее ученый продолжил работать в таком же ритме и год спустя занялся задачей, совершенно отличной от тех, что он решал до этого, — проблемой мостов Кенигсберга. Некоторые математики считают ее решение вершиной научных открытий Эйлера. Дело в том, что эта геометрическая задача не кажется геометрической, поскольку не содержит ни одной известной фигуры или каких-либо величин; в ней даны только определенные линии и точки, и рассуждать можно только о том, как дойти от одной до другой. Это необычная задача о необычном предмете.
Гравюра, Кенигсберг во времена Эйлера, на которой выделены семь мостов.
Кенигсберг, стоящий на берегу Балтийского моря, во времена Эйлера был частью Восточной Пруссии. Сегодня этот город называется Калининградом, он увеличился в размерах и находится на территории России, в географическом анклаве между Польшей и Литвой, образованном в результате войн.
Через город протекала река Преголя, притоки которой образовывали остров и делили город на три части, соединенные семью мостами, по которым жители могли переходить реку, как видно на рисунке на предыдущей странице. В таком идиллическом городском пейзаже можно было проложить множество разных маршрутов, но некоторые жители задались вопросом, можно ли создать замкнутую траекторию, то есть такой маршрут, который начинался бы и заканчивался в одной и той же точке так, чтобы при этом нужно было проходить всего один раз по каждому мосту. Это был математический вызов. Мостов было всего семь, а возможных маршрутов — несколько тысяч. Но абсурд ситуации заключался в том, что, по какому бы пути вы ни пошли, из какой бы точки ни стартовали, проходя всего один раз по каждому мосту, вы оказываетесь каждый раз не там, откуда начали. Многие стали сомневаться (и довольно справедливо) в том, что искомый маршрут существует, как замок в книге Кафки. Во времена Эйлера ученые нередко задавали себе подобные загадки. Если, не без помощи удачи, решение находилось, это могло привести к появлению новых математических теорий. Гораздо реже такие задачи открывали дорогу новой, благодатной и плодотворной области науки, и именно это случилось с задачей о мостах Кенигсберга. Исходя из схематичного плана города (рисунок 1 на следующей странице), Эйлер решил абстрагироваться от формы всех его составляющих и заменить их графом так, чтобы точки на суше стали вершинами, а мосты — путями (см. рисунок 2). Работая с получившимся графом, Эйлер пришел к своим выводам.
- Предыдущая
- 11/26
- Следующая