Выбери любимый жанр

Путешествие по Карликании и Аль-Джебре - Левшин Владимир Артурович - Страница 24


Изменить размер шрифта:

24

Удивляюсь, как ты этого не знал? Тут я срисовал для тебя один документ. Такие в Аль-Джебре висят чуть ли не на каждом столбе.

Вот, полюбуйся:

ВЕЛИКИЙ ДОГОВОР О ВЕЧНОЙ ДРУЖБЕ И СОТРУДНИЧЕСТВЕ
МЕЖДУ ДВУМЯ МОГУЩЕСТВЕННЫМИ ГОСУДАРСТВАМИ КАРЛИКАНИЕЙ И АЛЬ-ДЖЕБРОЙ.

А что там дальше, я списывать не стал. На это надо весь день потратить. Я бы и недели не пожалел, если бы всё это имело хоть какое-нибудь отношение к Чёрной Маске. Но, скажи на милость, при чём тут Чёрная Маска?

На каждом шагу натыкаешься на карликан: разгуливают себе почём зря целыми пачками. Многие здесь и живут.

Только что мы побывали в одном карликанском посёлке со смешным названием — Обжоры. Таня вспомнила, что у нас есть город Ижоры. Я не поверил. Тогда она прочитала стихотворение Пушкина «Подъезжая под Ижоры». То есть не всё стихотворение, а только первые четыре строчки. Но и это, по-моему, лишнее: мы-то ведь попали не в Ижоры, а в Обжоры. Так что нечего хвастать своей образованностью.

В Обжорах и впрямь живут страшные лакомки: все они без конца что-то жуют.

В посёлке только одна улица, но каждая её сторона имеет своё название: «Обжоры среднеарифметические» и «Обжоры среднегеометрические».

Сначала я не обратил на это внимания. Но оказалось, что между жителями двух сторон большая разница, хоть и те и другие одинаково зазывали нас в гости.

Ну, мы порядком проголодались и отказываться не стали.

Пошли сперва к обжорам среднеарифметическим.

И здорово прогадали.

Ничем, кроме разговоров, нас не угостили. Под конец им, правда, неудобно стало, и они рассказать в чём дело.

Все жители у них, ясное дело, работают. Кто лучше, кто хуже, кто больше наработает, кто меньше. Но они на это не смотрят: складывают всё вместе, а потом делят на всех поровну. У одного, например, на грядке выросло четыре килограмма огурцов, а у другого — девять. Сумма этих чисел равна тринадцати. Тринадцать делят на два. Вот каждый и получает по шести с половиной килограммов огурцов. Конечно, обжор-то не два, а гораздо больше. Но сколько бы их ни было, они складывают всё, что наработали, сумму делят на число работников, и каждый съедает свою долю до крошки. Где уж тут гостей кормить! Могли бы, правда, оставить кое-что про запас, так нет! На то они и обжоры.

После такого приёма не очень-то хотелось идти к обжорам среднегеометрическим. Но мы всё-таки пошли, и на этот раз нас накормили на славу!

Мы никак не могли понять, в чём дело.

— Может быть, — спрашиваем, — у вас делят не поровну?

— Нет, — говорят, — тоже поровну.

— Так, может быть, — спрашиваем, — вы не обжоры?

— Нет, — говорят, — обжоры.

— Откуда же у вас такие запасы?

Тут они нам и объяснили. Дело в том, что собранные продукты они не складывают, а перемножают. То есть не продукты, конечно, а количество их.

Один, скажем, снял с грядки четыре килограмма огурцов, а другой опять-таки девять:

4 9=36.

Ты небось думаешь, что тридцать шесть надо разделить на два; А вот и нет. Обжоры среднегеометрические и тут поступают по-своему Они не делят, а извлекают из полученного произведения корень. Да, да не удивляйся: у чисел есть корни, и их можно извлекать. Об этом нам ещё в прошлый раз рассказала Тройка с чемоданчиком на проспекте Действующих Знаков. Эти самые знаки высыпались у неё из чемоданчика прямо на асфальт.

Помножь три на три. Получится девять. Знаешь, что ты сделал? Ты возвёл три во вторую степень. Если же ты хочешь возвести три в третью степень, помножь его само на себя три раза. Получится двадцать семь. Пятая степень трёх будет уже двести сорок три…

Так можно возвести число и в сотую, и в двухсотую, и в какую хочешь степень.

А теперь ответь на такой вопрос: какое число нужно возвести во вторую степень, чтобы получить девять? Разумеется, три. Вот это три и есть корень второй степени из девяти.

Стало быть, извлечение корня — действие, обратное возведению в степень. Совсем как вычитание — действие, обратное сложению, а деление — умножению.

Так вот, из числа тридцать шесть среднегеометрические обжоры извлекают корень квадратный, иначе говоря, корень второй степени. Получается шесть.

Путешествие по Карликании и Аль-Джебре - i_082.png

Выходит, каждому обжоре досталось по шести килограммов огурцов. Это на полкило меньше, чем получил бы обжора среднеарифметический. Но зато при такой делёжке один килограмм остаётся в запасе: 13–12=1.

Тут мне пришло в голову, что обжор среднегеометрических тоже ведь не двое, а гораздо больше.

— Ну и что ж, — ответили мне, — каждый соберёт своё количество килограммов, мы все эти числа перемножим.

— И извлечёте корень второй степени? — перебил я.

— Что вы, что вы, — возмутились обжоры, — мы извлечём корень той степени, сколько у нас жителей!

Таня поинтересовалась, как обжоры обозначают такое действие.

Как? Да очень просто: закорючкой, которая похожа на сачок для ловли бабочек и называется радикалом. Только над сачком порхает не бабочка, а число, обозначающее степень корня. И называется оно показателем корня:

Путешествие по Карликании и Аль-Джебре - i_083.png

Если в посёлке четверо обжор, извлекается корень четвёртой степени:

Путешествие по Карликании и Аль-Джебре - i_084.png

Ну, а если сто четыре? Тогда и корень будет сто четвёртой степени:

Путешествие по Карликании и Аль-Джебре - i_085.png

Ты небось хочешь знать, почему это над радикалом не ставится двойка, когда извлекается корень квадратный? Почему, почему… Просто так уж условились.

Из всего, что мы увидели в Обжорах, мы с Таней поняли, что среднее арифметическое всегда больше среднего геометрического. Но Олег сообразил, что вовсе не всегда. Если бы жители Обжор собирали все до одного одинаковый урожай, среднее геометрическое и среднее арифметическое тоже были бы совершенно одинаковы. Не веришь? Я тоже начала не поверил. Но Олег доказал.

Допустим, двое собрали по восьми килограммов огурцов. Среднее арифметическое найдётся так:

Путешествие по Карликании и Аль-Джебре - i_086.png

А среднее геометрическое так:

Путешествие по Карликании и Аль-Джебре - i_087.png

Вещий Олег!

Среднегеометрические обжоры долго нас не отпускали. Да и нам не хотелось расставаться с такими гостеприимными хозяевами. Но стручок в кармане у Олега так разбушевался, что нам пришлось попрощаться.

Все высыпали нас провожать. Каждый тащил на дорогу что под рукой: кто помидоров, кто яблок… Но вкуснее всего были пирожки. Жаль, ты не попробовал! Всем нам досталось по-разному. Олегу — четыре. Тане — два, а мне — один. Я, понятно, плакать не стал. Но ребята сами решили разделить пирожки поровну.

Сначала попробовали делить, как обжоры среднеарифметические. Сложили число пирожков:

4+2+1=7.

А семь разделили на три. Получилось по два и одной трети пирожка на брата. Не очень-то удобно. Во-первых, у нас нет ножа. Да если б и был, всё равно разделить пирожок на три равные доли очень трудно. И потом, как же Пончик? Он хоть и маленький, но ведь и ему есть надо!

Тогда решили вычислить среднее геометрическое.

Сначала число пирожков перемножили:

4 · 2 · 1 = 8.

А потом из восьми извлекли корень третьей степени:

Путешествие по Карликании и Аль-Джебре - i_088.png

Вот и вышло по два пирожка на душу населения. А один остался для Пончика.

В общем, неплохо провели время. Но мне всё равно досадно. Ведь не из-за пирожков мы сюда пришли, а из-за Чёрной Маски! А о ней пока ни гугу. В следующий раз меня в это бешеное подземелье никакими пирожками не заманишь. Будь здоров.

Сева.

Воздушная монорельсовая дорога

(Таня — Нулику)

Вот, Нулик, наконец наступила и моя очередь писать. Дожидаться пришлось долго, зато есть о чём порассказать. Понимаешь, мы в первый таз побывали на воздушной монорельсовой дороге.

24
Перейти на страницу:
Мир литературы