Энергия и жизнь - Печуркин Николай Савельевич - Страница 12
- Предыдущая
- 12/46
- Следующая
Сам поток энергии, захваченной системой, складывается из двух частей: доли, связанной с запасением энергии в биомассе — В, и потерь на организацию, поддержание и активность, т. е. расход энергии системой, — R:
Нисп = µ В — R[2]. (2)
где µ — показатель прироста биомассы (или обновления в стационарном состоянии открытой системы).
Объединив (1) и (2), получим общее соотношение для потоков энергии в систему и ее трансформации в этой системе:
Нпад — Ннеисп = Нисп = µ В + R (3)
Дадим формулировку энергетического принципа: в процессах развития надорганизменных систем (эволюции, экологических сукцессиях и перестройках) использованный биологической системой поток энергии Нисп возрастает, достигая локальных максимальных значений в стационарных состояниях.
Подчеркнем еще раз, что в формулировке данного принципа речь идет о стационарных состояниях, которые достигаются в процессе развития открытых биологических систем популяционного и более высоких уровней структурной организации, а также их эволюции.
Представим схематически наиболее предпочтительный тип изменения потоков энергии во времени, использованных системой (рис. 10,а). Здесь показаны и рост Нпад, т. е. рост захваченной энергии, и уменьшение Ннеисп, т. е. снижение потерь. Штриховкой обозначено, что при этом происходит увеличение рассеяния энергии внутри системы Д с уменьшением трат на образование биомассы (это относится уже ко второму энергетическому принципу и будет обсуждаться позже). Естественно, что монотонное линейное увеличение Нпад или снижение Ннеисп не может иметь места в реальных системах. Гораздо типичнее скачкообразные переходы, связанные с качественными изменения в самой системе (рис. 10, б—г). Условия роста (или по крайней мере не убывания) потока использованной энергии Нисп остаются для каждого момента времени.
Рис. 10. Возможные изменения потоков энергии при развитии открытых биологических систем надорганизменного уровня. Везде отмечается рост Нисп. (Объяснение в тексте)
6.3. Экспериментальные эволюционные машины (ЭЭМ)
В предыдущем параграфе мы упоминали о том, что непрерывный рост микробных популяций в проточных системах позволяет экспериментально изучать микроэволюционные переходы, т.е. шаги эволюции.
Суть непрерывного процесса заключается в постоянной подаче питания в зону развития популяции и одновременном отборе избыточной части из рабочего пространства. Природная популяция, таким образом, осуществляя непрерывный обмен веществом с внешней средой и получая энергию извне, развивается в открытой системе, что является главной чертой ее динамики. В лабораторных условиях такой обмен осуществляется с помощью непрерывного потока питающей среды в рабочий объем ферментера и соответствующего оттока культуральной жидкости.
В классических периодических процессах нелимитированный рост популяции отмечается лишь во время экспоненциальной фазы, которая сменяется фазой замедления, т. е. торможения роста. При непрерывном культивировании можно застабилизировать рост популяции в любой точке на восходящей ветви S-образного роста популяции, в том числе и в экспоненциальной фазе. Для этого, как уже говорилось, необходимо непрерывно подавать свежую питательную среду для популяции и удалять избыточную часть популяции из рабочего объема. Для поддержания плотности популяции в заданной точке фазы нелимитированного роста применяются различные способы управления скоростью протока. Основное их свойство — наличие обратной связи между приростом концентрации биомассы и удалением части популяции из ферментера. Эти величины должны быть равными и это равенство, а с ним и концентрация биомассы — поддерживаются с помощью автоматических измеряющих и следящих устройств. Среди таких способов первым был турбидостат, в котором концентрация клеток поддерживается на определенном уровне за счет регулирования оптической плотности культуры. Применение его ограничено работой с оптически однородными средами.
Для процессов культивирования, в которых имеется прямая связь между приростом биомассы и изменением рН-культуры (например, при потреблении физиологически кислого источника азота), разработан и используется рН-статный способ управления скоростью протока. При этом скорость протока с помощью автоматических устройств уравнивается со скоростью изменения рН растущей популяцией, а следовательно, и со скоростью роста, что обеспечивает поддержание концентрации биомассы на заданном уровне.
Рис. 11. Блок-схема процессов непрерывного роста микробных популяций.
1 — культиватор; 2 — датчик-измеритель; 3 — самописец с регулятором; 4 — система управления насосами-дозаторами; 5 — система дозирования; 6 — сосуд с питательной средой; 7 — сборник урожая [Печуркин, 1982]. (Штриховой линией отмечена блок-схема хемостата.)
Наиболее просто и надежно система поддержания концентрации биомассы (клеток) и управления скоростью протока работает в импульсном режиме (рис. 11). Основу схемы составляет датчик-измеритель. Для турбидостата это — датчик оптической плотности, для рН-стата — электродная пара рН. Измеренное значение параметра в виде электрического сигнала подается на схему управления протоком (блоки 3 и 4). Если величина параметра достигает заданной, то в системе управления вырабатывается управляющий сигнал, который передается в систему дозирования. Происходит долив порции свежей питательной среды и одновременно такой же по объему слив части суспензии из ферментера. Разбавление культуры свежей питательной средой приводит к снижению величины управляющего параметра, и проток выключается. Продолжающийся рост популяции снова вызывает возрастание величины управляющего параметра до уровня срабатывания следящей системы и т. д. На самописце 3 вырисовывается «пила», частота и размер зубцов которой определяются особенностями схемы управления и скоростью роста популяции.
В отличие от описанного выше турбидостатного культивирования в нелимитированных условиях, когда для поддержания устойчивого состояния требуются регуляторы, хемостат характеризуется обязательным внешним ограничением роста. Такое ограничение является устойчивым регулятором стационарности параметров среды и популяции. Как правило, это — лимитирование недостатком одного из компонентов питания или ингибирование роста продуктами метаболизма. Основа хемостата — подача питательной среды с постоянной скоростью протока. Популяция, утилизируя субстрат, «загоняет» себя в условия лимитирования по одному из компонентов среды, потребляя его до низких остаточных значений. Хемостат получил широкое распространение, так как простота аппаратурного оформления сочетается в нем с широкими экспериментальными возможностями.
Для нас здесь необходимо подчеркнуть два важных свойства турбидо- и хемостата. Первый соответствует росту популяций в нелимитированных условиях, что в природе может встречаться на ранних фазах экологической сукцессии, например при заселении новой экологической ниши. Второй — с глубоким лимитированием роста — является аналогом большинства природных ситуаций, где повсеместно встречается ограничение роста.
С точки зрения функционирования открытых систем хемостат и турбидостат — это термодинамические системы, способные находиться в устойчивых стационарных состояниях. Причем хемостат соответствует случаю постоянных потоков, а турбидостат — случаю постоянной организации (или постоянных реакционных сил). Других условий стационарности в открытых системах просто не бывает. Таким образом, в руках экспериментаторов имеются открытые системы двух основных типов развития (и для экологии, и для термодинамики). Если в таких системах будут происходить эволюционные изменения, переход от одного стационарного состояния к другому в результате изменения качественных свойств систем (например, в результате процессов мутирования и отбора), то главные характеристики этих сукцессионных перестроек, или шагов эволюции, можно измерить, не теряя общности подхода с точки зрения как биологии, так и физики. Естественно, что основу такого единства составляет энергетический подход.
- Предыдущая
- 12/46
- Следующая