Выбери любимый жанр

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - Коллектив авторов - Страница 4


Изменить размер шрифта:

4

По электропроводности при нормальной температуре серебру нет равных. Серебряные проводники незаменимы в приборах высокой точности, когда недопустим риск. Ведь не случайно в годы второй мировой войны казначейство США раскошелилось, выдав военному ведомству около 40 т драгоценного серебра. И не на что-нибудь, а на замену меди! Серебро потребовалось авторам «Манхэттенского проекта». (Позже стало известно, что это был шифр работ по созданию атомной бомбы.)

Следует отметить, что серебро — лучший электропроводник при нормальных условиях, но, в отличие от многих металлов и сплавов, оно не становится сверхпроводником в условиях предельно достижимого холода. Так же, кстати, ведет себя и медь. Как ни парадоксально, но именно эти, замечательные по электропроводности металлы при сверхнизких температурах используют в качестве электроизоляторов.

Машиностроители шутя утверждают, что земной шар крутится на подшипниках. Если бы так было на самом деле, то можно не сомневаться — в столь ответственном узле наверняка применялись бы многослойные подшипники, в которых один или несколько слоев серебряные. Танки и самолеты были первыми потребителями драгоценных подшипников.

В США, например, производство подшипников из серебра началось в 1942 г., тогда на их производство было выделено 311 т драгоценного металла. Через год эта цифра выросла до 778 т.

Выше мы упоминали о таком качестве металлов, как звонкость. И по звонкости серебро заметно выделяется среди других металлов. Недаром во многих сказках фигурируют серебряные колокольчики. Колокольных дел мастера издавна добавляли серебро в бронзу «для малинового звона». В наше время струны некоторых музыкальных инструментов делают из сплава, в котором 90% серебра.

Фото и кино

Фотография и кинематограф появились в XIX в. и дали серебру еще одну работу. Особое качество элемента № 47 — светочувствительность его солей.

Более 100 лет известен фотопроцесс, но в чем его сущность, каков механизм реакции, лежащей в его основе? До последнего времени это представляли весьма приближенно.

На первый взгляд все просто: свет возбуждает химическую реакцию, и металлическое серебро выделяется из серебряной соли, в частности из бромистого серебра — лучшего из светочувствительных материалов. В желатине, нанесенной на стекло, пленку или бумагу, эта соль содержится в виде кристаллов с ионной решеткой. Можно предположить, что квант света, падая на такой кристалл, усиливает колебания электрона на орбите иона брома и дает ему возможность перейти к иону серебра. Таким образом, пойдут реакции

Br- + hν → Br + e-

и

Ag+ + е- → Ag.

Однако весьма существенно то, что состояние AgBr более устойчиво, чем состояние Ag+Br. Вдобавок к этому выяснилось, что совершенно чистое бромистое серебро вообще лишено светочувствительности.

В чем же тогда дело? Как оказалось, чувствительны к действию света только дефектные кристаллы AgBr. В их кристаллической решетке есть своего рода пустоты, которые заполнены добавочными атомами серебра пли брома. Эти атомы более подвижны и играют роль «электронных ловушек», затрудняя обратный переход электрона к брому. После того как электрон будет «выбит из седла» квантом света, один из «посторонних» атомов обязательно примет его. Вокруг такого «зародыша светочувствительности» адсорбируются и закрепляются выделившиеся из решетки атомы серебра. Освещенная пластинка ничем не отличается от неосвещенной. Изображение на ней появляется лишь после проявления. Этот процесс усиливает действие «зародышей светочувствительности», и изображение после закрепления становится видимым. Такова принципиальная схема, дающая самое общее представление о механизме фотопроцесса.

Фото- и кинопромышленность стали крупнейшими потребителями серебра. В 1931 г., например, США на эти цели расходовали 146 т драгоценного металла, а в 1958 — уже 933 т.

Старые фотоснимки и, в частности, фотодокументы со временем выцветают. До последнего времени был лишь один способ их восстановления — репродукция, пересъемка (с неизбежными потерями качества). Совсем недавно найден иной способ реставрации старых фотографий.

Снимок облучают нейтронами, и серебро, которым он «нарисован», превращается в свой короткоживущий радиоактивный изотоп. В течение нескольких минут это серебро испускает гамма-лучи, и если в это время на фотографию наложить пластинку или пленку с мелкозернистой эмульсией, то можно получить изображение, более четкое, чем на оригинале.

Светочувствительность серебряных солей используют не только в фотографии и кино. В ГДР и США почти одновременно организован выпуск универсальных защитных очков. Стекла их изготовлены из прозрачных эфиров целлюлозы, в которых растворено небольшое количество галогенидов серебра. При нормальном освещении такие очки пропускают около половины падающих на них световых лучей. Если же свет становится сильнее, то пропускная способность стекол падает до 5–10%, поскольку происходит восстановление части серебра и стекло, естественно, становится менее прозрачным. А когда свет снова слабеет, происходит обратная реакция и стекла приобретают большую прозрачность.

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее - i_006.jpg

Французский художник и изобретатель Луи-Жак Дагер (1787–1851), конечно же, не был первооткрывателем серебра. Но он разработал способ получения неисчезающих изображений, названный дагеротипией. Дагеротипия оказалась первым из получивших достаточно широкое распространение способов фотографии. А фотография стала одним из массовых потребителей серебра и его соединений 

Атомная служба серебра

Кинематограф и фотография достигли расцвета в XX в. и стали потреблять серебро в значительно больших, чем прежде, количествах. Но во второй четверти этого века появился еще один претендент на первоочередное использование элемента № 47.

В январе 1934 г. была открыта искусственная радиоактивность, возникающая под влиянием обстрела нерадиоактивных элементов альфа-частицами. Немного позже Энрико Ферми попробовал иные «снаряды» — нейтроны. При этом регистрировали интенсивность возникающего излучения и определяли периоды полураспада новых изотопов. Облучали поочередно все известные к тому времени элементы, и вот что оказалось. Особенно высокую радиоактивность под действием бомбардировки нейтронами приобретало серебро, а период полураспада образующегося при этом излучателя не превышал 2 минут. Именно поэтому серебро стало рабочим материалом в дальнейших исследованиях Ферми, при которых было открыто такое практически важное явление, как замедление нейтронов.

Позже этой особенностью серебра воспользовались для создания индикаторов нейтронного излучения, а в 1952 г. серебро «прикоснулось» и к проблемам термоядерного синтеза: первый залп нейтронов из плазменного «шпура» был зафиксирован на серебряных пластинах.

Но атомная служба серебра не ограничивается областью чистой науки. С этим элементом сталкиваются и при решении сугубо практических проблем ядерной энергетики.

В современных атомных реакторах некоторых типов тепло отводят расплавленными металлами, в частности натрием и висмутом. В металлургии хорошо известен процесс обезвисмучивания серебра (висмут делает серебро менее пластичным). Для атомной техники важен обратный процесс — обессеребрение висмута. Современные процессы очистки позволяют получать висмут, в котором примесь серебра минимальна — не больше трех атомов на миллион. Зачем это нужно? Серебро, попади оно в зону ядерной реакции, будет по существу гасить реакцию. Ядра стабильного изотопа серебро-109 (на его долю в природном серебре приходится 48,65%) захватываю? нейтроны и превращаются в бета-активное серебро-110. А бета-распад, как известно, приводит к увеличению атомного номера излучателя на единицу. Таким образом, элемент № 47 превращается в элемент № 48, кадмий, а кадмий — один из сильнейших гасителей цепной ядерной реакции.

4
Перейти на страницу:
Мир литературы