Цветное телевидение?.. Это почти просто! - Айсберг Евгений Давыдович - Страница 31
- Предыдущая
- 31/37
- Следующая
Рис. 70. Прежде чем попасть на пентод, поднесущая ограничивается по амплитуде двумя встречно включенными диодами.
Н. — Как сделать такую линию задержки? Если память мне не изменяет, количество индуктивно-емкостных элементов линии определяется произведением полосы пропускания на нужное время задержки, но ведь в нашем случае потребовалось бы колоссальное количество таких элементов.
Л. — Ты прав, если думаешь, что наша линия задержки сделана на таких элементах. На самом же деле в этом случае используется совершенно другая техника. Электромагнитные волны задержать очень трудно, так как они имеют очень большую скорость.
Н. — Действительно, ничто не может быть быстрее — ведь они распространяются со скоростью света 300 000 км/сек.
Л. — В вакууме. В системах задержки удается снизить их скорость. Но можно работать со значительно более медленными волнами, которые распространяются, например, со скоростью всего лишь в несколько километров в секунду.
Н. — Вот это да! Серьезная разница. Но как достигнуть такого результата?
Л. — А разве ты сам, Незнайкин, не знаешь медленные волны?
Н. — Конечно, например, звуковые волны.
Л. — Совершенно правильно, или, говоря в более общем виде, механические волны. Как известно, существуют определенные материалы, именуемые пьезоэлектрическими, которые изменяют свою форму под воздействием электричества.
Н. — Ты намекаешь на диффузоры громкоговорителей?
Л. — Они действительно отвечают приведенному определению, но это не материалы, а сделанные предметы Я же думал о кварце и о серии керамических материалов, как, например, некоторые поляризованные титанаты. Впрочем, происходящее в них явление обратимо: при механическом воздействии эти материалы становятся электрическими генераторами.
Н. — Я должен был о них подумать. Именно по этой причине делают генераторы с кварцевой стабилизацией, так как в механических кристаллических системах потери значительно меньшие, чем в электрических системах; следовательно, можно получить очень высокую добротность схемы.
Л. — Здесь мы не ищем добротности ради самой добротности, и пьезоэлектрические материалы используются лишь для преобразования электрической волны в механическую. На частоте поднесущей механические колебания представляют собой совершенно неслышимый ультразвук; ультразвук пропускают по стальному стержню длиной 20 см, на концах которого припаяны абсолютно идентичные пьезоэлектрические пластинки.
Н. — А разве можно припаять кварц на сталь?
Л. — Для этой цели используют титанат свинца, который имеет высокую точку Кюри.
Н. — О! Ты хочешь поместить в телевизор радиоактивные вещества. Но ведь это же очень опасно!!!
Л. — Знаменитый физик Пьер Кюри (который как раз изучал пьезоэлектричество) занимался не только радиоактивностью. Он провел исследования по ферромагнетизму и ферроэлектричеству. Он открыл, что если нагреть пьезоэлектрический материал выше определенной для него температуры (точки Кюри), он теряет свои свойства. Но пользуясь специальным припоем, который плавится при более низкой температуре, чем олово, можно легко припаять титанат свинца к стали и тем самым обеспечить между ними хорошую механическую связь.
Рис. 71. Схематическое изображение линии задержки.
Н. — Таким образом, линия задержки представляет собой стальной стержень длиной 20 см, к обоим концам которого припаяны пластинки из титаната свинца.
Л. — А 20 см — это как раз тот путь, который ультразвуковая волна проходит за 64 мксек. А для создания такой же задержки при прохождении электромагнитной волны в вакууме потребовалась бы линия длиной в 20 км.
Н. — Но наша линия не имеет никакого смысла!
Л. — Почему же?
Н. — У нее нет ни входа, ни выхода; ею можно пользоваться в обоих направлениях.
Л. — Это свойство присуще любому пассивному линейному элементу
Н. — Попробуем рассчитать длину линии задержки для яркостного сигнала
Да тут и паять-то негде!
Л. — Да нет же! Линия задержки для канала яркости должна быть совсем иного типа: это электрическая линия с распределенными постоянными. Она должна быть широкополосной, а не только пропускать узкую полосу, сконцентрированную на частоте поднесущей. И ты свободно можешь припаять к ней выводы, так как она имеет в длину добрый десяток сантиметров.
Что же касается электронного инвертора…
Н. — Думаю, что по схеме на рис. 72 я понял, как он работает. Когда напряжение на обоих входах положительное, горизонтальные диоды пропускают ток, а расположенные накрест диоды заперты. Когда напряжение отрицательное, все происходит наоборот. Следовательно, на входные сигналы инвертора нужно наложить чередующиеся положительные и отрицательные селектирующие импульсы, ибо полярность сигналов изменяется от строки к строке. Эти селектирующие импульсы мог бы выдавать триггер с двумя устойчивыми состояниями, возбуждаемый строчными импульсами; но я не вижу ничего подходящего.
Рис. 72. Схема инвертора и форма прямого и задержанного сигналов.
Л. — Триггер с двумя устойчивыми состояниями существует; однако сделать его можно и на одной лампе — на гептоде, включенном по схеме фантастрона.
Н. — Что это за новая «фантазия»?
Л. — Это лампа, которая периодически запирается отрицательными строчными импульсами большой амплитуды, приложенными к первой сетке; благодаря использованию отрицательной обратной связи между анодом и второй и третьей сетками создается триггер с двумя устойчивыми состояниями (рис. 73).
Рис. 73. Фантастрон — триггер с двумя устойчивыми состояниями.
Н. — Что касается выхода линии задержки, он соединен со вторым входом инвертора с помощью трансформатора. Возникает ли здесь вопрос согласования сопротивлений?
Л. — Сопротивление линии задержки комплексное (т. е. не чисто омическое) и небольшое; при включении в цепь линии задержки создает затухание порядка 20 дб, которое компенсируется повышающим трансформатором.
Н. — Две вещи в схеме меня беспокоят.
Л. — Что же именно?
Н. — Прежде всего я вижу на выходе инвертора два диодных ограничителя, т. е. в общей сложности три ограничителя. Скажи, здесь ничего не напутали?
- Предыдущая
- 31/37
- Следующая