Выбери любимый жанр

Энциклопедия «Техника» (с иллюстрациями) - Горкин Александр Павлович - Страница 12


Изменить размер шрифта:

12

АККУМУЛЯ́ТОР ЭЛЕКТРИ́ЧЕСКИЙ, гальванический элемент многоразового использования, в котором происходит накопление электрической энергии за счёт превращения в химическую с целью дальнейшего использования после обратного преобразования из химической в электрическую. Аккумуляторы состоят из положительного электрода – анода, отрицательного электрода – катода и электролита. Самый распространённый в наши дни свинцовый аккумулятор содержит две группы свинцовых пластин (2 электрода), покрытых оксидом свинца, опущенных в электролит – разбавленную серную кислоту. При подключении аккумулятора к источнику постоянного тока на электроде, присоединённом к аноду источника тока, из электролита выделяется кислород, который окисляет оксид свинца в пероксид свинца. На электроде, подключённом к катоду источника тока, выделяется водород, восстанавливающий оксид свинца в чистый свинец. Этот процесс называется зарядкой аккумулятора, на него расходуется электрическая энергия. Но она не исчезает бесследно, а переходит в химическую энергию, в результате между электродами образуется разность потенциалов. При разряде аккумулятора происходит обратный процесс: аккумулятор отдаёт запасённую электрическую энергию, а на пластинах-электродах вновь образуется оксид свинца.

Пластины аккумулятора не обязательно делать из свинца. Широко применяются такие пары химически различных металлов, как кадмий и никель, железо и никель, серебро и цинк. Отличаются аккумуляторы и составом электролита – напр., используется не кислота, а щёлочь.

Аккумуляторы и аккумуляторные батареи применяют в качестве автономных источников электроэнергии на транспорте, в навигационных приборах, космических аппаратах, радиоэлектронной аппаратуре, в бытовых и медицинских приборах и др.

Энциклопедия «Техника» (с иллюстрациями) - i_035.jpg

Аккумулятор:

1 – электролит; 2 – электроды; 3 – корпус

АКТИ́ВНАЯ ЗÓНА ядерного реактора, часть пространства внутри ядерного реактора, где размещается ядерное топливо (тепловыделяющие элементы); в активной зоне протекает контролируемая цепная реакция деления ядер тяжёлых элементов (урана, плутония), сопровождающаяся выделением большого количества теплоты. Тепловыделяющие элементы находятся в активной зоне обычно в виде блоков или стержней. Пространство вокруг тепловыделяющих элементов и между ними заполнено замедлителем – материалом, тормозящим нейтроны. Выделяющиеся из ядер нейтроны имеют большую скорость; при торможении замедлителем их кинетическая энергия превращается в тепловую. В качестве замедлителей нейтронов чаще всего применяют графит, обычную и тяжёлую воду, органические жидкости. Через активную зону проходит также теплоноситель, который служит для отвода выделяющегося тепла. Это могут быть вода, водяной пар, инертный газ, жидкий металл (напр., натрий), которые омывают тепловыделяющие элементы и уносят тепло для дальнейшего использования (напр., в парогенераторе). Чаще всего активная зона имеет вид цилиндра, окружённого отражателем нейтронов и мощной многослойной защитной оболочкой.

АКУСТИ́ЧЕСКАЯ СИСТÉМА, устройство для воспроизведения звука, состоящее обычно из нескольких громкоговорителей, размещённых в одном общем корпусе. Акустические системы входят в комплекты большинства электрофонов, магнитофонов и музыкальных центров, широко применяются в сочетании с электромузыкальными инструментами, а также в составе звуковоспроизводящей аппаратуры в кинотеатрах и концертных залах.

К основным показателям, характеризующим акустические системы, относятся номинальная мощность и диапазон воспроизводимых частот. Номинальная мощность определяет максимальную громкость звука, воспроизводимого без искажения. Выпускаются акустические системы мощностью от 2 до 100 Вт и более. Номинальную громкость звука в комнате средних размеров обеспечивают акустические системы мощностью 2–4 Вт. Но лучше пользоваться более мощными системами (10–20 Вт), т. к. при той же средней громкости звучания они позволяют воспроизводить больший диапазон громкости звука без искажений. От диапазона воспроизводимых звуковых частот зависит качество звучания, возможность воспроизведения звуковых оттенков.

Изготовление громкоговорителей, способных в одиночку воспроизводить весь диапазон звуковых частот, технически сложно и дорого. Поэтому акустические системы комплектуют двумя-тремя громкоговорителями, каждый из которых воспроизводит звуки своего частотного диапазона (полосы частот). Так, двухполосная акустическая система обычно содержит два громкоговорителя с диапазонами частот, напр., 25 Гц – 5 кГц и 3 кГц – 15 кГц, трёхполосная система – три громкоговорителя с диапазонами частот 18 Гц – 1 кГц, 500 Гц – 5 кГц и 3 кГц – 18 кГц. Некоторые акустические системы (их называют активными), помимо громкоговорителей, содержат усилители электрических колебаний с элементами коррекции уровня звука в разных частных диапазонах.

АКУСТИ́ЧЕСКИЕ МАТЕРИÁЛЫ, предназначаются для снижения уровня шума в помещениях. Подразделяются на звукопоглощающие и звукоизоляционные. Звукопоглощающие материалы применяют чаще всего для обшивки стен и потолков внутри зданий. По характеру поглощения звука они делятся на пористые (лёгкий бетон, пеностекло) и пористо-упругие (минеральная вата, стекловолокно, асбестоцемент, древесноволокнистые плиты и т. д.). Звукоизоляционные материалы применяют гл. обр. в виде прослоек в перекрытиях, во внутренних, наружных стенах и перегородках для гашения ударных шумов, проникающих через перекрытие (напр., при хождении по полу), вибрации (от работы машин) и т. д. Это, как правило, эластичные рулонные или плиточные материалы на основе минеральной ваты, стекловаты, асбестового картона, резины и т. п.

АЛГОРИ́ТМ, способ (программа) решения вычислительных и других задач, точно предписывающий, как и в какой последовательности получить результат, однозначно определяемый исходными данными. Слово «алгоритм» происходит от имени узбекского математика Мухаммеда аль-Хорезми (латинизированное Algorithmi), жившего в 9 в. Алгоритм – одно из основных понятий математики и кибернетики. В вычислительной технике для описания алгоритма используются языки программирования. Однако алгоритм – это не только чисто математическое понятие. Каждый человек ежедневно решает задачи, для выполнения которых используется тот или иной алгоритм, сформулированный в виде ряда однозначных предписаний. Примерами могут служить правила пользования телефоном-автоматом или рецепт приготовления того или иного блюда.

АЛЬТИМÉТР, то же, что высотомер.

АЛЮМИ́НИЙ, al, серебристо-белый металл, химический элемент III группы периодической системы (ат. н. 13, ат. масса 26.98). По распространённости занимает первое место среди металлов. В свободном виде в природе не встречается. Чистый алюминий впервые выделил в 1825 г. датский учёный К. Эрстед. Способ промышленного производства алюминия впервые предложил французский химик А. Сент-Клер Девиль (1856). Получают Al электролизом растворов глинозёма Al₂О₃ в расплавленном криолите Nа₃AlF6 при 950 °C (катод – под электролизной ванной, анод – угольные блоки, погружённые в электролит).

Плотность Al 2699 кг/мі; температура плавления 660 °C, температура кипения ок. 2452 °C. Относится к химически активным металлам. На воздухе покрывается тонкой прочной плёнкой оксида, препятствующей дальнейшему окислению. При повышенных температурах реагирует со многими химическими элементами. Отличается высокой коррозионной стойкостью в пресной и морской воде, не взаимодействует с органическими кислотами (уксусной, лимонной, винной) и пищевыми продуктами. При нагревании восстанавливает оксиды других металлов до металлов (алюмотермия). Легко поддаётся ковке, прокатке, штамповке. Отличается высокой электропроводностью, уступая лишь серебру, меди и золоту; его удельное электрическое сопротивление 0.0265 мкОм·м.; теплопроводность 1.24 · 10–3 Вт/(м·К). Слабо парамагнитен. При охлаждении ниже 120 К его прочность, в отличие от большинства металлов, возрастает, а пластичность не меняется. Сплавы Al отличаются малой плотностью (до 3000 кг/мі), хорошей электро – и теплопроводностью, жаропрочностью, стойкостью к коррозии, хорошо поддаются механической обработке. Подразделяются на деформируемые и литейные сплавы. Из деформируемых сплавов низкой прочности,[1] изготовляют листы, проволоку, рамы, окантовки, фольгу, пищевые контейнеры; сплавы средней прочности[2] используются как конструкционные материалы, работающие при низких температурах, и для изготовления элементов двигателей; из высокопрочных сплавов[3] изготовляют детали машин и конструкций, работающих при высоких температурах и под большой нагрузкой (винты вертолётов и самолётов, крылья самолётов). Среди литейных сплавов выделяют жаропрочные (Al-Cu-Si-Mg-Ni) для работы при температурах до 400 °C, коррозионностойкие (Al-Mg), работающие в морской воде, высокопрочные[4] малопроницаемые для жидкостей и газов и выдерживающие давление до 25 МПа. Широкое применение находят также порошковые сплавы, которые получают распылением жидкого алюминия в воздухе или инертной среде при высокой скорости охлаждения.

12
Перейти на страницу:
Мир литературы