Тайны космоса - - Страница 13
- Предыдущая
- 13/120
- Следующая
Были выяснены и пределы увеличения. По теории выходило, что число уровней орбиты, на которых может находиться возбужденный электрон, не превышает десятка. Но это опять-таки в земных условиях, где атомов в кубическом сантиметре пространства обычно больше, чем пассажиров в переполненном трамвае. А если заглянуть в бездонные глубины космоса? Там ведь могут отыскаться участки, где количество атомов в том же объеме измеряется единицами. А значит, есть и принципиальная возможность расти, «раздуваться» чуть ли не беспредельно: соседи-тому не мешают.
Теоретики — и в их числе известный астрофизик Н. С. Кардашев — в свое время указывали, где можно наблюдать скопления таких атомов-гигантов — в разреженных межзвездных, даже межгалактических облаках, состоящих из ионов водорода и гелия.
Поиски в облаках. Облака эти тоже не бог какая новость для науки. Уже около 80 лет астрономы знают, что космическое пространство между звездами в нашей Галактике не является полностью пустым, а заполнено газом, содержащим небольшие гранулы пыли.
Хотя элементы, образующиеся в звездах, чаще всего существуют в виде отдельных атомов или инертных гранул, время от времени они образуют и молекулы. Причем некоторые из них настолько необычны, что об этом стоит поговорить подробно.
Но разговор наш может состояться лишь в том случае, если теория не вступит в противоречие с практикой. Или, говоря иначе, подобные атомы и молекулы-гиганты действительно можно обнаружить во Вселенной.
Однако звездолеты строить мы пока не научились. Как же тогда выяснить, в каком именно состоянии вещество в межгалактических облаках, какие размеры имеют составляющие его атомы и молекулы?
Ученые решили предпринять обходной маневр великанов стали искать по их следам. Мы уже говорили, что при переходе с орбиты на орбиту электроны в атомах либо получают энергию, либо отдают ее в виде излучения. А раз так, это можно обнаружить спектроскопическими методами. То есть по виду излучения, по длине его волны, исследователи, находясь на поверхности нашей планеты, могут судить, при переходе с какого на какой электронный уровень оно было получено.
Так говорила теория. Но на самом деле все выглядело вовсе не столь уж гладко даже на бумаге. Те же теоретические расчеты показывали: атомов с электронами на высших уровнях в природе очень мало. Кроме того, при большом удалении от ядра интенсивность излучения электрона резко падает. Да и само излучение приходится на такие диапазоны, где много помех как природного (все звезды имеют свои «радиоголоса»), так и искусственного, земного происхождения (на тех же длинах волн работают многие промышленные установки и радиостанции). Да вдобавок еще и эффект Доплера мешает.
О последнем, пожалуй, стоит сказать пару слов особо — это еще пригодится нам в дальнейшем.
Дело в том, что атомы в межзвездном пространстве, конечно, не стоят на месте, а беспрерывно движутся, причем с большими скоростями. Такие колебания, метания вокруг некоего центра свойственны всем атомам, нагретым выше температуры асболютного нуля (-273,6 ёС). А физики давно заметили, что частота излучения меняется в зависимости от того, в каком направлении — от нас или к нам —движется тело. Вы и сами могли в том убедиться: гудок приближающейся электрички звучит иначе, чем удаляющейся…
А поскольку атомы движутся не по расписанию, как электрички, а хаотично, излученные ими спектры накладываются друг на друга, размываются, становятся весьма трудно различимыми. Так что когда в 1962 году американские исследователи провели серию наблюдений с помощью радиотелескопа, то вынуждены были в конце концов отступить. «Тут нужна специальная аппаратура уникальной чувствительности», заключили они.
За дело взялись наши специалисты. И вскоре в Физическом институте им. П. Н. Лебедева была создана радиоустановка с 27-метровой антенной. В апреле 1964 года с ее помощью в районе туманности Омега была наконец обнаружена радиолиния возбужденного водорода. Она соответствовала переходу электрона с 91-го уровня на 90-й, то есть атом превосходил почти на порядок те, что имеются на Земле. Причем почти одновременно с москвичами астрономы Пулковской обсерватории отыскали в просторах Вселенной еще большие атомы.
Сообщение об открытии вызвало бурю в научном мире. Разработанные нашими исследователями методы поиска атомов-гигантов были приняты на вооружение всеми обсерваториями мира. И результаты не замедлили сказаться.
Есть находка! Например, по предложению С. Я. Брауде в Харькове были развернуты исследования, целью которых стало обнаружение атомов, для которых количество разреженных атомных уровней было бы не 10, как на Земле, а 600.
Теоретики подсчитали, что уловить слабое излучение столь «раздутых» атомов, находящихся от нас на многие десятки тысяч световых лет, способна лишь антенна площадью в несколько квадратных километров! Построить такую систему уже непростая инженерная задача. Да ведь еще надо предусмотреть, чтобы часть ее передвигалась: именно таким образом производится перенацеливание антенны на тот или иной участок неба.
И все-таки задача была решена; неподалеку от Харькова выросло необычное Т-образное сооружение, занимающее целое поле — 1800x900 м. Это и был уникальный радиотелескоп УТР-2.
С его помощью в 1978 году астрофизикам удалось обнаружить первые следы атомов, электронные оболочки которых имели 640 уровней! Затем отыскали и еще большие гиганты с 750 уровнями. Если привести эти данные к обычным метрическим мерам, то выходит, что такие атомы должны иметь диаметр около 0,1 мм. От обычных они отличаются как Садовое кольцо от горошины! Если бы мы были способны различать электронные облака, то могли бы в принципе увидеть их даже невооруженным глазом.
Следы жизни. Однако обнаружение атомов, пусть и атомов-великанов, являлось вовсе не самоцелью исследований. По мнению ученых, такие атомы, а уж тем более состоящие из них молекулы, должны обладать на редкость необычными свойствами. Какими именно?
Чтобы понять это, исследователи по спектрограммам прежде всего постарались разобраться, какие именно молекулы могут образоваться. И вот тут их ждал приятный сюрприз. Оказалось, что наряду с водородом и гелием в облаках, хотя редко (1 атом на 100 атомов водорода), встречаются и ядра более тяжелых атомов и молекул. Астрономам удалось обнаружить ионизированные молекулы, а также их фрагменты-радикалы, содержащие в себе кислород, азот, серу, кремний, хлор и фосфор.
- Предыдущая
- 13/120
- Следующая