Выбери любимый жанр

Шаг за шагом. Транзисторы - Сворень Рудольф Анатольевич - Страница 44


Изменить размер шрифта:

44

Уменьшение питающего напряжения Ек одновременно уменьшает и ток Iк, и напряжение Uбк и таким образом смещает всю линию нагрузки в сторону нуля (линия А'В при Ек = 6 в).

Задавшись пределами изменения входного сигнала, можно найти пределы изменения коллекторного тока и напряжения на коллекторе. Так, если входное напряжение меняется от 150 мв до 250 мв (наша входная характеристика говорит о том, что такие пределы изменений вполне допустимы), то все события в транзисторе будут происходить в пределах участка MN нагрузочной прямой. При этом коллекторный ток будет меняться от 2 ма до 10 ма, а напряжение на коллекторе — от 2 в до 10 в. Отсюда легко найти и амплитудные значения напряжения и тока выходного (усиленного) сигнала Iампл = Iк(MN):2 = 8 ма: 2 = 4 ма. Мы делим Iк(MN) на два потому, что в этом интервале должны «поместиться» две амплитуды («положительная» и «отрицательная»), а значит, на каждую из них придется только половина Iк(MN). Аналогично находим и амплитуду переменного напряжения: UамплUбк(MN):2 = 8 в:2 = 4 в.

Прежде чем двигаться дальше, нам нужно покаяться в грехах, рассказать о некоторых неточностях, которые мы допустили, пытаясь отделить суть дела от второстепенных подробностей, и, по возможности, избежать лишних названий, терминов и объяснений.

Так, например, мы назвали входными характеристиками все графики, приведенные на рис. 54, в то время как входной характеристикой официально называется лишь зависимость Iэ от Uэб. Более того, зависимость напряжения на нагрузке Uн от напряжения Uэб на входе транзистора попала в число входных характеристик совсем уже незаконно: все эти характеристики снимаются без нагрузки, при постоянном напряжении на коллекторе и поэтому называются статическими. Статическими, кстати, называются и все наши выходные характеристики. Они тоже снимаются без нагрузки, а влияние Rн учитывается путем несложных вычислений и построений.

Мы не отметили на входной характеристике очень небольшой эмиттерный ток, возникающий при отсутствии входного напряжения, то есть при Uэб = 0, если при этом есть хотя бы небольшое напряжение на коллекторе. Этот начальный ток появляется благодаря тому, что коллекторный ток создает в самой базовой области на ее собственном, внутреннем сопротивлении некоторое внутреннее напряжение, отпирающее эмиттерный переход даже тогда, когда нет внешнего отпирающего напряжения.

Другой «странный ток» — довольно большой коллекторный ток Iк, который существует даже при отсутствии коллекторного напряжения, то есть при Uбк = 0. Он появляется из-за диффузии через базу зарядов, впрыснутых в нее из эмиттера.

Мы не будем продолжать перечисление подобных второстепенных, но несомненно интересных подробностей. Во-первых, с некоторыми из них нам еще предстоит встретиться. Во-вторых, уже пора сделать какие-нибудь полезные выводы из долгого и трудного разбора входных и выходных характеристик транзистора.

УЧИТЕСЬ ДЕЛАТЬ ВЫВОДЫ

Первые несколько выводов мы, как говорится, можем «взять голыми руками», бегло взглянув на рис. 56 и 58. Выводы эти касаются параметров самого транзистора — он обладает очень небольшим входным сопротивлением, очень большим выходным сопротивлением и не дает усиления по току.

Другие выводы — они касаются режима транзисторного усилителя — будут сделаны на основании анализа входной и выходной характеристик, причем мы будем наблюдать за усилителем в динамическом режиме, то есть когда на его вход подан усиливаемый сигнал, а в коллекторную цепь включена нагрузка.

Чтобы легче представить себе то, что происходит в этом случае с транзистором, мы воспользуемся совмещенными графиками, пример построения которых понятен из рис. 62.

Шаг за шагом. Транзисторы - _126.jpg

Рис. 62. Если известно, как меняется входное напряжение, то, пользуясь входной характеристикой, можно построить график входного (эмиттерного) тока.

В левой части рис. 62 помещена входная характеристика транзистора, которая показывает, как меняется ток Iэ при изменении управляющего напряжения Uэб. Само же напряжение Uэб непрерывно меняется, так как ко входу усилителя подведен сигнал Uсиг. Кроме того, на входе действует еще и напряжение смещения Uсм. Суммируясь, Uсм и сигнал дают меняющееся напряжение Uэб. График этого напряжения (рис. 62—Б) мы «положили набок» и совместили его с входной характеристикой. «Совместили» — это значит, что деления на оси напряжения Uэб графика Б совпадают с делениями на оси напряжения Uэб графика А. Иными словами, одинаковые значения напряжений —100 мв, 200 мв, 300 мв и т. д. — лежат строго друг против друга, то есть совмещены.

Обратите внимание, что ось времени, на графике Б размечена не в «законных» единицах времени — не в сек, мсек, мксек и т. д. На этой оси маленькими буквами а, б, в отмечены лишь три наиболее интересных момента. Так, например, от момента 0 до момента а входного сигнала нет, и на базе действует только одно смещение. Моменты б и в соответствуют положительной и отрицательной амплитудам усиливаемого сигнала. Суммируясь с Uсм или вычитаясь из него, эти амплитуды дают наибольшее Uэб-макс или наименьшее Uэб-мин напряжение на базе.

Попутно еще раз напоминаем, что наибольшим напряжением на базе мы будем считать наибольший «минус» на ней, именно тот самый «минус», который отпирает эмиттерный рn-переход и увеличивает эмиттерный ток. «Минус» напряжения Uэб откладывается по оси напряжений вправо от нуля. Это непривычно, но зато удобно. Конечно, более привычным было бы откладывать вправо от нуля не «минус», а «плюс». Но для этого уже пришлось бы вести речь не о «минусе» на базе, а о «плюсе» на эмиттере. И хотя по существу здесь нет никакой разницы (если на базе — 2 в относительно эмиттера, то на эмиттере + 2 в относительно базы; человек, живущий на первом этаже шестиэтажного дома, может сказать, что над ним пять этажей, а тот, кто живет на последнем этаже, может сказать, что под ним пять этажей), однако в интересах будущего лучше приучиться говорить о напряжении на базе относительно эмиттера, а не о напряжении на эмиттере относительно базы. Поэтому-то мы а откладываем вправо от нуля отрицательное напряжение — Uэб, то есть «минус» на базе.

Итак, мы совместили с входной характеристикой транзистора график, показывающий, как с течением времени меняется входное напряжение Uэб. Теперь можно быстро узнать, каким будет эмиттерный ток в тот или иной момент времени. Для этого достаточно определить Uэб, затем провести вспомогательную прямую линию на входную характеристику и, наконец, по входной характеристике определить, каким будет ток при данном Uэб. Так, например, легко находим, что в момент а на базе действует напряжение Uэб = 200 мв и что этому напряжению соответствует ток Iэ = 6 ма. Аналогично для момента б находим Uэб = 250 мв и Iэ = 10 ма, а для момента в определяем Uэб = 150 мв и Iэ = 2 ма.

Определяя ток для разных моментов времени, можно построить еще один важный график — зависимость входного тока Iэ от времени t. Для удобства этот третий график (рис. 62—В) располагаем справа от входной характеристики и ось тока Iэ размечаем в том же масштабе, что и ось тока Iэ на входной характеристике. Это позволит упростить само построение третьего графика, так как необходимую величину тока можно будет откладывать на нем, протянув вспомогательную прямую линию от входной характеристики.

44
Перейти на страницу:
Мир литературы