Выбери любимый жанр

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - Гомес Жуан - Страница 2


Изменить размер шрифта:

2

Представьте, что вы находитесь в районе Эшампле и хотите попасть из точки А в точку В. Если каждый городской квартал считать за единицу пути, то каким будет в этих единицах расстояние между точками А и В?

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _02.jpg

Глядя на этот рисунок, можно представить треугольник с гипотенузой (прямая линия между точками А и В) и двумя другими сторонами (вдоль улиц от одной точки к другой). Тогда длина одной стороны составит 4 единицы, а другой — 2.

Применяя теорему Пифагора (а = Ь2 + с2), мы можем найти длину гипотенузы: √(42 + 22) = √20 = 4,47 единиц. Если нам нужно рассчитать время в пути, то очевидно, что это расстояние обманчиво, потому что мы не можем передвигаться из одной точки в другую по прямой линии. Реальное расстояние будет суммой двух других сторон треугольника, то есть 6 единиц.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _03.jpg

Мы могли бы попробовать различные другие маршруты, чтобы найти наименьшее расстояние. Вариантов множество. Мы можем двигаться по вертикали и по горизонтали, поворачивая на первую улицу, а затем на вторую, или сделать поворот через две улицы и так далее. Однако общее расстояние всегда будет 6 единиц.

На следующем рисунке изображены различные маршруты между точками А и В. Всего имеется 15 возможностей.

Выходит, что фактический маршрут вовсе не является прямой линией. Здесь появляется другое понятие расстояния, которое называется расстоянием такси. Это понятие нелинейного расстояния лежит в основе геометрии такси.

* * *

ВОЗМОЖНЫЕ МАРШРУТЫ

Формула, выражающая количество всех возможных маршрутов для n вертикальных и m горизонтальных движений, выглядит следующим образом:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _04.jpg

Здесь n! означает факториал числа n, который равен n ·(n-1)·(n-2)·…·2·1. Например, 5! = 5–4 — 3–2 — 1 = 120. В нашем примере формула записывается так:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _05.jpg

возможных маршрутов.

* * *

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _06.jpg
Расстояние такси

Расстояние, которое изучается в школе, является евклидовым расстоянием. Оно находится по теореме Пифагора, поэтому расстояние между двумя точками Р и Q с координатами Р = (x1, y1) и Q = (x2, у2) выражается следующей формулой:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _07.jpg

В отличие от евклидова расстояния, минимальное расстояние в городе с прямоугольной сеткой улиц считается как dT(P, Q) = |x2 — x1| + |y2 — y1|

* * *

АБСОЛЮТНОЕ ЗНАЧЕНИЕ

Выражение |А| означает «абсолютное значение числа А», которое получается путем игнорирования знака числа. Если число А положительно, то |А| = А, а если число А отрицательно, то |А| = — А, например, |-5| = 5.

* * *

Это альтернативное расстояние называется манхэттенским расстоянием, или расстоянием Минковского, в честь немецкого математика Германа Минковского.

На более популярном языке это расстояние называют также расстоянием такси. На рисунке ниже пунктирная линия отмечает евклидово расстояние, а сумма длин вертикальных и горизонтальных отрезков соответствует расстоянию такси.

Если точка С является началом координат, то точка А имеет координаты (2, 1), а точка В — координаты (0, 5). Таким образом, евклидово расстояние составляет 4,47 единиц, а расстояние такси — 6 единиц. Обратите внимание, что положение начала координат не влияет на результат при расчете расстояний.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _08.jpg

В математике метрикой или расстоянием между двумя точками А и В называется такое соотношение, которое удовлетворяет условиям положительности, симметрии и неравенства треугольника. А именно,

1) δ(A, В) >= 0, и из δ(A, В) = 0 следует, что А = В;

2) δ(A, В) = δ(В, A);

3) δ(А, В) =< δ(А, С) + δ(С, В).

Евклидово расстояние d(A, В) и расстояние такси dt(A, В) — два примера расстояний, которые удовлетворяют указанным выше условиям. В общем случае d(A, В) =< dT(A, В).

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _09.jpg

* * *

ГЕРМАН МИНКОВСКИЙ (1864–1909)

Немецкий математик Герман Минковский разработал геометрическую теорию чисел — геометрический метод решения задач из теории чисел. В 1907 г. он понял, что специальная теория относительности Эйнштейна может быть лучше выражена в терминах неевклидовой геометрии четырехмерного пространства. Это пространство с тех пор называется пространством Минковского. В нем время и пространство являются взаимосвязанными измерениями и образуют четырехмерное пространство, так называемое пространство-время. Именно таким подходом позже воспользовался Эйнштейн при работе над общей теорией относительности.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _10.jpg

* * *

Пример с треугольниками

В евклидовой геометрии имеется признак равенства треугольников по двум сторонам и углу между ними, который работает следующим образом.

Пусть у нас имеются два треугольника АВС и А1В1С1 со сторонами соответственно АВ, АС, ВС и А1В1, A1C1, B1C1. Тогда, если АВA1B1, АС = А1С1 и угол ВАС равен углу В1A1С1, то сторона ВС равна стороне B1C1, то есть треугольники равны.

Другими словами, если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то третьи стороны в треугольниках также будут равны. Такие треугольники равны. Однако этот очевидный результат оказывается ложным в геометрии такси.

Рассмотрим треугольники с вершинами А = (3,1), В = (1, 3), С = (5, 3) и А1 = (4, 4), В1 = (8, 4), С1 = (4, 0), как изображено на рисунке:

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - _11.jpg

Можно показать, что

dT(A, B) = 4 = dT(A1, B1),

а также

dT(A, C) = 4 = dT(A1, C1),

Таким образом, по формуле расстояния такси b1 и с = с1. Обратите внимание, что угол ВАС также равен углу В1А1С1 (в данном примере они равны 90°). Несмотря на выполнение условий признака равенства, стороны а и а; наших треугольников имеют разную длину. Это совершенно разные треугольники, так что для них признак равенства треугольников из евклидовой геометрии не работает.

2
Перейти на страницу:
Мир литературы