Биологическая химия - Лелевич Владимир Валерьянович - Страница 20
- Предыдущая
- 20/71
- Следующая
Для получения значительных количеств рекомбинантного генетического материала проводят клонирование ДНК, предполагающее встраивание нужного фрагмента ДНК в векторную молекулу, Вектор обеспечивает проникновение этой рекомбинантной ДНК в бактериальные клетки. При размножении трансформированных бактерий происходит увеличение числа копий введенного фрагмента ДНК, а также синтез не свойственных бактериальной клетке, но весьма ценных для человека белковых продуктов. Таким способом получают вакцины, инсулин, гормон роста, факторы свертывания крови и др.
Работа с нуклеотидными последовательностями требует наличия достаточного количества материала для исследования. Поэтому фрагменты ДНК предварительно амплифицируют (увеличивают количество). Метод полимеразной цепной реакции (ПЦР), предложенный в 1983 г. Карри Муллисом, позволяет подвергать специфической амплификации в условиях in vitro любые образцы ДНК.
Полимеразная цепная реакция протекает в три стадии:
1. Денатурация. Инкубационную смесь, в которой содержится образец нужной ДНК, нагревают до температуры 90°С. При этом в течение 15 секунд происходит разрушение слабых водородных связей между нитями ДНК, и из одной двухцепочечной молекулы образуется две одноцепочечные.
2. Гибридизация праймеров. Температуру снижают до 50°С. При этом происходит гибридизация цепей ДНК с праймерами. Эта стадия обычно протекает 30 секунд.
3. Полимеризация. Инкубационную смесь нагревают до 70°С. При такой температуре полимераза удлиняет оба праймера с их 3'-концов. Праймеры дорастают до размеров матрицы. Этот процесс протекает в течение 90 секунд. В результате количество ДНК удваивается.
Процедуру проводят в автоматическом режиме в приборе – термоциклере (циклизаторе, амплификаторе). Это устройство позволяет задавать нужное количество циклов и выбирать оптимальные временные и температурные параметры. С помощью ПЦР можно получить достаточное количество копий участков ДНК, в которых предполагаются присутствие мутаций, полиморфизм сайтов, можно проводить ДНК-диагностику инфицированности пациентов вирусными, бактериальными и грибковыми возбудителями болезней.
Глава 8. Введение в метаболизм
Обмен веществ или метаболизм – это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Процесс метаболизма, сопровождающийся образованием более простых соединений из сложных, обозначают термином - катаболизм. Процесс, идущий в обратном направлении и приводящий, в конечном счете, к образованию сложного продукта из относительно более простых – анаболизм. Анаболические процессы сопровождаются потреблением энергии, катаболические – высвобождением.
Анаболизм и катаболизм не являются простым обращением реакций. Анаболические пути должны отличаться от путей катаболизма хотя бы одной из ферментативных реакций, чтобы регулироваться независимо, и за счет контроля активности этих ферментов регулируется суммарная скорость распада и синтеза веществ. Ферменты, которые определяют скорость всего процесса в целом, называются ключевыми.
Более того, путь по которому идет катаболизм той или иной молекулы, может быть непригодным для ее синтеза по энергетическим соображениям. Например, протекающие в печени расщепление глюкозы до пирувата представляет собой процесс, состоящий из 11 последовательных стадий, катализируемых специфическими ферментами. Казалось бы, синтез глюкозы из пирувата должен быть простым обращением всех этих ферментативных стадий её распада. Такой путь представляется на первый взгляд и самым естественным, и наиболее экономичным. Однако в действительности биосинтез глюкозы (глюконеогенез) в печени протекает иначе. Он включает лишь 8 из 11 ферментативных стадий, участвующих в ее распаде, а 3 недостающие стадии заменены в нем совсем другим набором ферментативных реакций, свойственным только этому биосинтетическому пути. Кроме того, реакции катаболизма и анаболизма часто разделены мембранами и протекают в разных компартментах клеток.
Таблица 8.1. Компартментализация некоторых метаболических путей в гепатоците
Компартмент
Метаболические пути
Цитозоль
Гликолиз, многие реакции глюконеогенеза, активация аминокислот, синтез жирных кислот
Плазматическая мембрана
Энергозависимые транспортные системы
Ядро
Репликация ДНК, синтез различных видов РНК
Рибосомы
Синтез белка
Лизосомы
Изоляция гидролитических ферментов
Комплекс Гольджи
Образование плазматической мембраны и секреторных пузырьков
Микросомы
Локализация каталазы и оксидаз аминокислот
Эндоплазматическая сеть
Синтез липидов
Митохондрии
Цикл трикарбоновых кислот, цепь тканевого дыхания, окисление жирных кислот, окислительное фосфорилирование
Метаболизм выполняет 4 функции:
1. снабжение организма химической энергией, полученной при расщеплении богатых энергией пищевых веществ;
2. превращение пищевых веществ в строительные блоки, которые используются в клетке для биосинтеза макромолекул;
3. сборка макромолекулярных (биополимеры) и надмолекулярных структур живого организма, пластическое и энергетическое поддержание его структуры;
4. синтез и разрушение тех биомолекул, которые необходимы для выполнения специфических функций клетки и организма.
Метаболический путь – это последовательность химических превращений конкретного вещества в организме. Промежуточные продукты, образующиеся в процессе превращения, называют метаболитами, а последнее соединение метаболического пути – конечным продукт. Примером метаболического пути является гликолиз, синтез холестерина.
Метаболический цикл – это такой метаболический путь, один из конечных продуктов которого идентичен одному из соединений вовлеченных в этот процесс. Наиболее важными в организме человека метаболическими циклами являются цикл трикарбоновых кислот (цикл Кребса) и орнитиновый цикл мочевинообразования.
Почти все метаболические реакции в конечном итоге связаны между собой, поскольку продукт одной ферментативной реакции служит субстратом для другой, которая в данном процессе играет роль следующей стадии. Таким образом, метаболизм можно представить в виде чрезвычайно сложной сети ферментативных реакций. Если поток питательных веществ в какой-нибудь одной части этой сети уменьшится или нарушится, то в ответ могут произойти изменения в другой части сети, для того чтобы это первое изменение было как-то уравновешено или скомпенсировано. Более того, и катаболические и анаболические реакции отрегулированы таким образом, чтобы они протекали наиболее экономично, то есть с наименьшей затратой энергии и веществ. Например, окисление питательных веществ в клетке совершается со скоростью, как раз достаточной для того, чтобы удовлетворить ее энергетические потребности в данный момент.
Специфические и общие пути катаболизма
В катаболизме различают три стадии:
1. Полимеры превращаются в мономеры (белки – в аминокислоты, углеводы в моносахариды, липиды – в глицерол и жирные кислоты). Химическая энергия при этом рассеивается в виде тепла.
2. Мономеры превращаются в общие продукты, в подавляющем большинстве в ацетил-КоА. Химическая энергия частично рассеивается в виде тепла, частично накапливается в виде восстановленных коферментных форм (НАДН, ФАДН2), частично запасается в макроэргических связях АТФ (субстратное фосфорилирование).
- Предыдущая
- 20/71
- Следующая