Выбери любимый жанр

Глаз и Солнце - Вавилов Сергей Иванович - Страница 16


Изменить размер шрифта:

16

Во время полных солнечных затмений имеется возможность рассмотреть оболочку Солнца в деталях – мы видим ее как бы в поперечном разрезе. Фотосфера окружена тонким слоем красного цвета, так называемой хромосферой; в нее проникают факелы из фотосферы. Толщина хромосферы около 10 000 км. Из нее вылетают колоссальные фонтаны светящегося газа, так называемые протуберанцы, высота которых достигает иногда сотен тысяч километров. Протуберанцы бывают главным образом двух типов – облакообразные и взрывные. В первых преимущественно светится водород, как и в самой хромосфере, во вторых, наряду с водородом, сильно выражены линии металлических паров. За последнее время астрономы получили в свои руки новые удобные способы наблюдения протуберанцев в любое время, а не только при затмениях. Тщательно закрывая в телескопе солнечный диск до краев темным диском, применяя безукоризненные стекла (в смысле отсутствия рассеивающих пузырьков и свилей) и пользуясь, кроме того, хорошими светофильтрами, пропускающими только узкую часть спектра, можно наблюдать солнечные протуберанцы вне затмений. Кроме того, за последнее десятилетие разработаны весьма совершенные светофильтры, выделяющие практически только одну узкую спектральную линию. В результате стала вполне возможной кинематографическая съемка протуберанцев, открывающая такие особенности солнечных взрывов, которые ранее оставались совершенно скрытыми.

Между фотосферой и хромосферой расположен очень тонкий, так называемый обращающий слой, в котором, по-видимому, и возникают главные линии Фраунгофера.

Во время полных солнечных затмений наблюдается невооруженным глазом поразительное явление так называемой короны, простирающейся на миллионы километров от края Солнца. Корона имеет, вообще говоря, лучеобразную структуру. Иногда лучи приблизительно равномерно окружают солнечный диск, в других случаях корона особенно вытянута в определенных направлениях. В сечении короны можно различить три спектра. Наиболее ярок непрерывный спектр внутреннего кольца короны. В этом спектре нет линий Фраунгофера; природа этой части короны до сих пор остается загадочной. Ее обычно приписывают рассеянию солнечных лучей в атмосфере электронов. Однако провести такое объяснение последовательно, до конца, согласуя со всеми фактами, еще не удалось. Второй спектр тоже непрерывный, но с фраунгоферовыми линиями; его приписывают отраженному свету фотосферы (отражать могут более холодные и удаленные от Солнца частицы пыли). Третий спектр – линейчатый и соответствует свечению атомов. Можно думать, что этот третий спектр возникает вследствие флуоресценции паров под влиянием солнечного света. На это указывают некоторые особенности поляризации этого спектра. Таким образом, Солнце на несколько миллионов километров окружено веществом в разреженном состоянии, частью в виде паров, частью в виде пыли. Эта пыль и пары могут отгоняться от Солнца электрическими силами и световым давлением. Впрочем, во многих отношениях солнечная корона остается еще непонятным явлением. Не исключена, например, возможность, что некоторая часть свечения короны вызывается своеобразным процессом «саморассеяния» лучей в результате пересечения интенсивных световых пучков вблизи Солнца. Современная теория света считается с возможностью такого процесса.

Наш мимолетный и крайне упрощенный очерк оптических явлений на поверхности Солнца мы закончим сведениями об энергии, излучаемой Солнцем. Эта энергия распределена по всему спектру и в невидимой и в видимой областях. На видимую область при этом падает около 40 % всей энергии.

Представим себе, что Земля лишена атмосферы. Основываясь на прямых измерениях энергии солнечных лучей, действительно падающих на земную поверхность, и учитывая влияние атмосферы, можно рассчитать, что при отвесном падении солнечных лучей поверхность Земли без атмосферы получила бы в минуту в среднем 2 калории, или 0,033 калории в секунду на 1 кв. см. На самом деле часть этой энергии поглощается атмосферой.

Зная эту цифру, так называемую солнечную постоянную, легко вычислить общее количество энергии, излучаемое Солнцем в одну секунду. Для этого достаточно сделать естественное предположение, что Солнце излучает одинаково во все стороны, вычислить поверхность шара с радиусом в 150 млн км (расстояние между Солнцем и Землей) и полученную площадь, выраженную в квадратных сантиметрах, помножить на солнечную постоянную, т. е. на 0,033 калории. При выполнении такого расчета приближенно получается 1026 калорий в секунду (т. е. число, первая цифра которого 1, а за нею следует 26 нулей). Это число и само по себе мало наглядно, да и самое понятие калории довольно отвлеченное. Поэтому поучительно будет сделать следующий пересчет.

Современная физика выяснила, что энергия всегда эквивалентна массе. Первым и важнейшим указанием на эту связь послужит факт давления света на тела, впервые открытый и измеренный П. Н. Лебедевым. Тонкими и исключительно трудными опытами Лебедев доказал, что свет, падая на зачерненную пластинку, полностью его поглощающую, давит на пластинку с силою, равной E/tc. Здесь Е – энергия света, поглощаемого за t секунд, а с – скорость света. Если пластинка не черная, а, наоборот, зеркальная, полностью отражающая свет, то давление на нее вдвое больше. Лебедев своими многолетними опытами показал далее, что свет оказывает давление не только на твердые тела, но и на газы. Это обстоятельство приобрело первостепенное значение для современной теории солнечных явлений.

По законам механики следует, что для того, чтобы остановить за время t какой угодно поток (водяной, световой), оказывающий давление, необходимо его «уравновесить» силой F, определяемой из соотношения Ft = mv, где тv – произведение массы т, приносимой потоком, на его скорость v, носящее название количества движения. Итак, сила давления потока F равна изменению количества движения за 1 секунду, т. е. F = mv/t. В случае светового потока v = c (скорость света). Приравняв найденное выражение для силы давления к величине, полученной согласно опытам Лебедева для давления света, найдем mc/t = E/tc, откуда m = E/c2. Полученная формула определяет массу света m, эквивалентную его энергии Е. Это чрезвычайно важное уравнение получено в приведенном выводе в итоге применения законов механики к оптическим измерениям Лебедева и на первый взгляд имеет ограниченное применение – только для света. Впервые Эйнштейн указал, что уравнение

mc2= E

универсально и должно быть справедливым для любых видов энергии. Заключение Эйнштейна получает все большее и широкое экспериментальное подтверждение по мере развития новой физики, в особенности физики атома и атомного ядра, и в настоящее время должно рассматриваться как одно из важнейших положений науки.

Пользуясь написанной формулой, произведем пересчет энергии, излучаемой Солнцем в секунду, на массу. Найденная выше цифра 1026 малых калорий в секунду оказывается равнозначащей примерно 5 млн тонн в секунду. Эта масса, громадная сама по себе, ничтожна для Солнца. Ранее мы нашли, что при отдаче миллиарда тонн в секунду Солнце уменьшилось бы по массе вдвое только за 30 млрд лет, стало быть, при отдаче 5 млн тонн в секунду Солнце может «исхудать» наполовину только за 6000 млрд лет.

Совершенно так же можно пересчитать энергию, получаемую в секунду всей Землей, на массу. Для этого нужно помнить, что одновременно освещается только половина земного шара и, кроме того, что солнечная постоянная относится к отвесным лучам. В результате пересчета получается совсем скромная и легко запоминаемая цифра – около 2 кг в секунду.

Эти пересчеты, делающие несколько осязаемой энергию, излучаемую Солнцем, имеют вместе с тем большой принципиальный смысл. Нас поражает масса Солнца и его практически неисчерпаемая энергия. Как собираются массы, подобные солнечной, и где источник их непрерывно излучаемой энергии? Массы стягиваются в солнечные центры, вероятно, всемирным тяготением. Но, по-видимому, солнечная масса почти предельная; бывают скопления вещества, раз в десять превышающие массу Солнца, но дальнейшего нарастания астрономы не знают. Чем же объясняется такой предел?

16
Перейти на страницу:
Мир литературы