Выбери любимый жанр

Интерстеллар - Торн Кип - Страница 41


Изменить размер шрифта:

41

Согласно Кип-версии, профессор Брэнд, работая с уравнениями теории относительности, заново открывает AdS-бутерброд (так же, как это сделал я); см. его доску на рис. 3.6. Вопрос стабилизации ограничительных бран становится затем частью работы профессора по исследованию и укрощению гравитационных аномалий. В фильме показано шестнадцать досок в кабинете профессора Брэнда, математические выкладки на которых отражают его усилия.

Путешествие сквозь AdS-слой

Интерстеллар - _30.jpg

AdS-искривление порождает в AdS-слое приливные силы, которые по человеческим стандартам просто чудовищны. Каждой сущности из балка, проходящей через этот слой по пути в нашу брану, придется иметь дело с этими силами. Поскольку нам неизвестно, из какого вещества (вещества с четырьмя пространственными измерениями) состоят сущности из балка, мы не можем знать, явится ли это для них проблемой. В научной фантастике этот вопрос остается на совести писателей и сценаристов.

Но для Купера, путешествующего в тессеракте (см. главу 29), все не так просто, ведь в Кип-версии ему необходимо пройти через AdS-слой. Поэтому нужно чтобы тессеракт либо защищал его от действующих в AdS-слое огромных приливных сил, либо отодвигал AdS-слой прочь с дороги — иначе Купера растянет в макаронину74.

Ограничивая гравитацию, AdS-слой регулирует ее силу. В «Интерстеллар» мы видим колебания гравитации — возможно, они вызваны флуктуациями в AdS-слое. Эти флуктуации — гравитационные аномалии — играют ключевую роль в фильме. Поговорим теперь о них.

Интерстеллар - _178.jpg

Гравитационные аномалии

Гравитационная аномалия — это нечто такое, что связано с гравитацией и не укладывается в наши представления о Вселенной или не соответствует нашему пониманию законов физики, управляющих Вселенной: например падения книг в «Интерстеллар», которые Мёрф считает проделками призрака.

С середины XIX столетия физики со всем рвением выискивают новые гравитационные аномалии и изучают уже найденные. Почему? Потому, что исследование любой истинной аномалии может привести к научной революции, коренному изменению наших взглядов на то, что мы считаем истиной

Интерстеллар - _28.jpg
. Начиная с середины XIX века подобное происходило уже трижды.

Попытки профессора Брэнда разобраться с гравитационными аномалиями в «Интерстеллар» — вполне в духе этих революций, о которых я сейчас вкратце расскажу.

Аномальная прецессия орбиты Меркурия

Интерстеллар - _28.jpg

Ньютоновский закон обратных квадратов для гравитации (см. главу 2 и главу 23) требует, чтобы орбиты планет, вращающихся вокруг Солнца, были эллиптическими. На каждую планету действует также и гравитационное притяжение других планет, что заставляет ее эллиптическую орбиту сдвигаться в пространстве — прецессировать.

В 1859 году астроном Урбен Леверье из Парижской обсерватории объявил, что обнаружил аномалию орбиты Меркурия. Рассчитав полную прецессию орбиты Меркурия, вызванную влиянием других планет, он получил неверный результат. Наблюдаемая прецессия оказалась больше расчетной примерно на 0,1 секунды дуги на каждый оборот Меркурия вокруг Солнца (рис. 24.1).

Интерстеллар - _179.jpg

Рис. 24.1. Аномальная прецессия орбиты Меркурия. Я утрировал эллиптичность орбиты и величину прецессии

Конечно, 0,1 секунды дуги — это совсем небольшой угол, всего одна десятимиллионная от полной окружности. Однако из ньютоновского закона обратных квадратов следует, что даже такой крохотной аномалии быть не должно.

Леверье решил, что аномалия вызвана притяжением еще не открытой планеты, находящейся ближе к Солнцу, чем Меркурий, — он назвал ее Вулкан.

Астрономы долго и безуспешно искали Вулкан. Но не могли ни отыскать его, ни придумать иное объяснение аномалии. К 1890 году созрело решение: ньютоновский закон обратных квадратов неверен — но совсем чуть-чуть.

И что означало это «чуть-чуть»? Как оказалось, это «чуть-чуть» предвещало революцию. Ту самую, которую совершил Эйнштейн 25 лет спустя. Искривление времени и пространства наделяет Солнце силой гравитации, которая подчиняется закону обратных квадратов, но лишь приблизительно, не абсолютно точно.

Осознав, что его новые релятивистские законы объясняют наблюдаемую аномалию, Эйнштейн пришел в восторг. Он почувствовал, будто что-то у него внутри щелкнуло, и его сердце заколотилось как бешеное: «Несколько дней я был вне себя от радостного возбуждения».

На сегодняшний день измеренная аномалия прецессии и прогнозы законов Эйнштейна совпадают с точностью до одной тысячной (одной тысячной от аномальной прецессии), что соответствует точности измерений — грандиозное достижение Эйнштейна!

Аномальные орбиты галактик

Интерстеллар - _28.jpg

В 1933 году астрофизик Фриц Цвикки из Калтеха заявил, что обнаружил крупную аномалию орбитального движения галактик относительно друг друга. Галактики находились в скоплении Кома (рис. 24.2), состоящем примерно из тысячи галактик и расположенном в 300 миллионах световых лет от Земли, в созвездии Волосы Вероники.

Интерстеллар - _180.jpg

Рис. 24.2. Галактическое скопление Кома, увиденное через сильный телескоп

Пользуясь данными о доплеровском сдвиге в спектральных линиях галактик, Цвикки мог оценить, насколько быстро они движутся друг относительно друга, а измерив яркость каждой галактики — оценить ее массу и, следовательно, гравитационное притяжение. Галактики двигались так быстро, что их гравитационное притяжение не смогло бы удержать скопление от распада. Из всех наших знаний о Вселенной и гравитации явно следует, что этим галактикам положено разлететься в разные стороны и вскоре скопление должно полностью исчезнуть. В таком случае выходит, что скопление образовалось из-за случайных перемещений галактик и должно разрушиться в мгновение ока (по сравнению с другими астрономическими явлениями).

Но этот вывод казался Цвикки совершенно невероятным. Что-то было не так с нашими привычными взглядами. Цвикки сделал обоснованное предположение: скопление Кома должно быть заполнено некой «темной материей», гравитация которой достаточно сильна, чтобы удерживать скопление от распада.

Надо заметить, что, по мере того как росла точность измерений, астрономы и физики находили все больше и больше аномалий, но каждой из них в конце концов находилось объяснение, лишающее ее статуса аномалии. Только не в этом случае. Более того, к 1970-м годам стало ясно, что так называемая темная материя пронизывает практически все скопления галактик и даже отдельные галактики. К началу этого века выяснилось, что темная материя гравитационно линзирует свет, исходящий от более далеких галактик (рис. 24.3), — так же, как Гаргантюа линзирует свет, исходящий от звезд (см. главу 8). Сегодня этот эффект линзирования используется для картографирования темной материи в нашей Вселенной.

Интерстеллар - _181.jpg

Рис. 24.3. Темная материя в скоплении галактик Abell 2218 гравитационно линзирует свет от более далеких галактик. Изображения линзированных галактик дугообразны (обведены фиолетовыми овалами), подобно изображениям, которые видны при гравитационном линзировании Гаргантюа (см. главу 8)

Сейчас физики вполне уверены, что открытие темной материи — свершившаяся революция и что эта материя состоит из фундаментальных частиц незнакомого нам типа, причем типа, предсказанного наиболее перспективными на сегодняшний день концепциями в квантовой физике. Отныне ученые ищут святой Грааль — пытаются обнаружить частицы темной материи, безнаказанно пролетающие мимо нас, и измерить их свойства.

41
Перейти на страницу:

Вы читаете книгу


Торн Кип - Интерстеллар Интерстеллар
Мир литературы