Выбери любимый жанр

Техническая подготовка командира взвода ПЗРК 9К38 «Игла» - Акулов Игорь Евгеньевич - Страница 17


Изменить размер шрифта:

17
ФУНКЦИОНИРОВАНИЕ ДВИГАТЕЛЬНОЙ УСТАНОВКИ

При переводе пускового крючка в крайнее положение с электронного блока ПМ через контакты колодки СД, расположенной на ПТ, на электровоспламенитель СД поступает электрический импульс и поджигает навеску пороха. При горении навески повышается давление в камере двигателя, и от воспламенителя загорается основной заряд, давление продолжает быстро нарастать, под его действием вскрываются сопла, и двигатель начинает разгонять и раскручивать ракету, придавая ей ускорение порядка 120g. Процесс разгона кратковременный, после чего двигатель тормозится и улавливается в специальном расширенном пространстве пусковой трубы.

После срабатывания СД форс пламени от его воспламенителя через трубку поджигает лучевой воспламенитель замедленного действия. Последний после сгорания своего заряда поджигает воспламенитель, от которого загорается основной заряд маршевого двигателя.

Для обеспечения безопасности стрелка-зенитчика МД начинает работать примерно через 0,4 с после вылета из трубы. Тем самым создаётся зона безопасности не менее 5,5 м, обеспечивающая минимальное воздействие газовой струи работающего двигателя на стрелка.

Основной заряд начинает гореть по всей открытой поверхности, площадь которой через 1,9 с из-за применения бронировки уменьшается. Соответственно меняется тяга двигателя (второй режим).

В случае если при попадании ракеты в цель в МД останется топливо, оно подрывается вместе с БЧ от детонационного импульса взрывного генератора.

Минимальное усилие отдачи при пуске не превышает 20 кг/С, что в два раза меньше, чем при стрельбе из винтовки калибра 7,62 мм. Продукты сгорания, действующие на оператора:

• пары соляной кислоты — 295 мг/м³;

• пары окиси углерода — 20 мг/м³;

• пары окиси азота — 15 мг/м³.

При пуске изделия частота пульса стрелка увеличивается на 30–40 ударов, артериальное давление возрастает на 30–40 мм рт. ст.

Следует отметить, что на практике реальное срабатывание обычно превышает 6 м, так как при проектировании закладывались предельные значения параметров, влияющих на параметры зоны безопасности (температура окружающей среды, параметры твердого топлива СД, вес ракеты, сила трения, действующая на ракету при ее движении в трубе, время работы пирозамедлителя, встречный ветровой поток), в жизни же совпадение всех этих параметров очень редко.

КОМПЛЕКСНОЕ ФУНКЦИОНИРОВАНИЕ БОРТОВОЙ АППАРАТУРЫ РАКЕТЫ ПРИ БОЕВОМ ПРИМЕНЕНИИ

Функционирование бортовой аппаратуры при подготовке ракеты к пуску

1. При приведении в действие с помощью механизма накола наземного источника питания на ракету выдается:

а) напряжение постоянного тока ±5 В и ±20 В — для питания электрических цепей;

б) сжатый азот — для охлаждения фоторезистора основного канала до –196 °C за 4,5 с и поддержания этой температуры в течение 14 с. Этим обеспечивается высокая чувствительность фотоприёмника к тепловому излучению поражаемых целей на фоне помех;

в) управляющее напряжение на катушки вращения гироскопа, формируемое датчиками положения пусковой трубы и блоком разгона пускового механизма, — для раскрутки ротора гироскопа до 100 об/с за время не более 5 с. Этим обеспечивается частота кругового сканирования цели в поле зрения объектива и проявление свойств гироскопа.

2. После раскрутки гироскопа автомат разарретирования и пуска (АРП) пускового механизма обеспечивает коммутацию цепей включения в работу системы стабилизации оборотов (ССО) и системы арретирования ротора гироскопа (САР):

а) ССО, сравнивая сигнал с катушки ГОН, характеризующий фактическую частоту вращения, с заданной частотой, формирует в катушках вращения импульсы тока, вызывающие притормаживание или доразгон ротора. Этим обеспечивается поддержание частоты сканирования цели в узкой полосе пропускания усилительно-преобразовательного тракта сигнала ошибки наведения ракеты.

б) САР, сравнивая сигнал с катушки пеленга, характеризующий отклонение оптической оси координатора от продольной оси ракеты (угол пеленга), с сигналом катушки заклона, задающим отклонение линии прицеливания от продольной оси ракеты на 10° вниз, формирует сигнал ошибки арретирования, который отрабатывается следящим приводом координатора до нуля. Этим обеспечивается принудительное совмещение оптической оси координатора линией прицеливания.

3. При прицеливании стрелок должен обеспечить удержание цели в узком поле зрения объектива (2°). При этом тепловое излучение поражаемых целей и ЛТЦ селектируется зеркально-линзовым объективом и раздельно фокусируется в виде пятен малого размера в фокальных плоскостях основного и вспомогательного спектральных каналов. Этим обеспечивается перенос информации о пространственном положении цели и ЛТЦ относительно оптической оси координатора (ошибки слежения) в фокальные плоскости объектива. Важно, что положение пятна в фокальной плоскости однозначно характеризует направление и величину ошибки слежения.

4. Благодаря тому, что диски модуляторов размещены в фокальных плоскостях объектива, вращаются относительно его оптической оси с частотой сканирования и имеют прозрачное окно специальной формы, происходит круговое сканирование положения пятен (а значит, цели и ЛТЦ) и импульсная модуляция их тепловых потоков информацией об ошибке слежения. Этим обеспечивается преобразование информации об ошибке слежения к виду, пригодному для считывания фотодетекторами.

5. Фотосопротивления основного и вспомогательного каналов преобразуют модулированные тепловые потоки цели и ЛТЦ в синхронные импульсные электрические сигналы постоянного тока. Причём в длительности импульса содержится информация о величине, а во временном положении импульса в периоде сканирования — о направлении ошибки слежения за целью. За начало отсчёта периода сканирования условно принято направления вверх.

6. Предварительные усилители фотоприёмника, охваченные автоматической регулировкой усиления, преобразуют сигналы постоянного тока в цепи фотосопротивлений в периодические сигналы переменного тока требуемого уровня, содержащие в себе первые гармоники частоты сканирования. Причём амплитуда сигналов частоты сканирования несёт информацию о величине, а фаза — о направлении ошибки слежения за целью и ЛТЦ.

7. Использование в ПЗРК «Игла» двухканального фотоприёмника обеспечивает в условиях отстрела противником ЛТЦ (с интервалом до 0,3 с и превышением мощности излучения до 6 раз) автоматическую, с помощью схемы переключения, временную селекцию в периоде сканирования только сигналов истинных целей и повышение вероятности их поражения до 0,31 на встречных курсах и до 0,24 вдогон. Селекция может быть отключена нажатием кнопки «СЕЛЕКТОР» на пусковом механизме. Сигнал цели с выхода схемы переключения поступает в обнаружитель цели автомата разарретирования и пуска пускового механизма и через избирательный усилитель, амплитудный детектор, фазовращатель и «дежурит» на входе усилителя коррекции следящей системы координатора.

8. При установке пускового крючка в положении «РР» АРП при заданном превышении сигналом цели сигнала фона разрешает разарретирование (отключает от следящего привода координатора сигнал ошибки арретирования и подключает сигнал ошибки слежения за целью). При этом сигнал ошибки слежения усиливается по мощности в усилителе коррекции и запитывает катушки коррекции. Катушки коррекции, взаимодействуя с полем постоянного магнита ротора гироскопа, создают электромагнитный момент, заставляющий прецессировать координатор в сторону уменьшения ошибки слежения. Таким образом, следящий координатор захватывает и начинает автоматически сопровождать цель, определяя угловую скорость линии визирования (ошибку наведения ракеты). Далее, в течение 0,8 с, АРП поэтапно оценивает параметры сигнала цели и, при положительном результате анализа, включает световую и звуковую сигнализацию, разрешающую пуск. Прерывистая сигнализация свидетельствует о недостаточном качестве сигнала цели и периодическом арретировании координатора для перезахвата цели.

17
Перейти на страницу:
Мир литературы