Выбери любимый жанр

Физика и философия - Гейзенберг Вернер Карл - Страница 5


Изменить размер шрифта:

5

В классической физике в процессе точного исследования ошибки наблюдения также учитываются. В результате этого получают распределение вероятностей для начальных значений координат и скоростей, и это имеет некоторое сходство с функцией вероятности квантовой механики. Однако специфическая неточность, обусловленная соотношением неопределённостей, в классической физике отсутствует.

Если в квантовой теории из данных наблюдения определена функция вероятности для начального момента, то можно рассчитать на основании законов этой теории функцию вероятности для любого последующего момента времени. Таким образом, заранее можно определить вероятность того, что величина при измерении будет иметь определённое значение. Например, можно указать вероятность, что в определённый последующий момент времени электрон будет найден в определённой точке камеры Вильсона. Следует подчеркнуть, что функция вероятности не описывает само течение событий во времени. Она характеризует тенденцию события, возможность события или наше знание о событии. Функция вероятности связывается с действительностью только при выполнении одного существенного условия: для выявления определённого свойства системы необходимо произвести новые наблюдения или измерения. Только в этом случае функция вероятности позволяет рассчитать вероятный результат нового измерения. При этом снова результат измерения даётся в понятиях классической физики. Поэтому теоретическое истолкование включает в себя три различные стадии. Во-первых, исходная экспериментальная ситуация переводится в функцию вероятности. Во-вторых, устанавливается изменение этой функции с течением времени. В-третьих, делается новое измерение, а ожидаемый результат его затем определяется из функции вероятности. Для первой стадии необходимым условием является выполнимость соотношения неопределённостей. Вторая стадия не может быть описана в понятиях классической физики; нельзя указать, что происходит с системой между начальным измерением и последующими. Только третья стадия позволяет перейти от возможного к фактически осуществляющемуся.

Мы разъясним эти три ступени на простом мысленном эксперименте. Уже отмечалось, что атом состоит из атомного ядра и электронов, которые двигаются вокруг ядра. Также было установлено, что понятие электронной орбиты в некотором смысле сомнительно. Однако вопреки последнему утверждению можно сказать, что всё же, по крайней мере в принципе, можно наблюдать электрон на его орбите. Быть может, мы и увидели бы движение электрона по орбите, если бы могли наблюдать атом в микроскоп с большой разрешающей силой. Однако такую разрешающую силу нельзя получить в микроскопе, применяющем обычный свет, поскольку для этой цели будет пригоден только микроскоп, использующий γ-лучи, с длиной волны меньшей размеров атома. Такой микроскоп до сих пор не создан, но технические затруднения не должны нас удерживать от обсуждения этого мысленного эксперимента. Можно ли на первой стадии перевести результаты наблюдения в функцию вероятности? Это возможно, если выполняется после опыта соотношение неопределённостей. Положение электрона известно с точностью, обусловленной длиной волны γ-лучей. Предположим, что перед наблюдением электрон практически находится в покое. В процессе наблюдения по меньшей мере один квант γ-лучей обязательно пройдёт через микроскоп и в результате столкновения с электроном изменит направление своего движения. Поэтому электрон также испытает воздействие кванта. Это изменит его импульс и его скорость. Можно показать, что неопределённость этого изменения такова, что справедливость соотношения неопределённостей после удара гарантируется. Следовательно, первый шаг не содержит никаких трудностей. В то же время легко можно показать, что нельзя наблюдать движение электронов вокруг ядра. Вторая стадия — количественный расчёт функции вероятности — показывает, что волновой пакет движется не вокруг ядра, а от ядра, так как уже первый световой квант выбивает электрон из атома. Импульс γ-кванта значительно больше первоначального импульса электрона при условии, если длина волны γ-лучей много меньше размеров атома. Поэтому уже достаточно первого светового кванта, чтобы выбить электрон из атома. Следовательно, нельзя никогда наблюдать более чем одну точку траектории электрона; следовательно, утверждение, что нет никакой, в обычном смысле, траектории электрона, не противоречит опыту. Следующее наблюдение — третья стадия — обнаруживает электрон, когда он вылетает из атома. Нельзя наглядно описать, что происходит между двумя следующими друг за другом наблюдениями. Конечно, можно было бы сказать, что электрон должен находиться где-то между двумя наблюдениями и что, по-видимому, он описывает какое-то подобие траектории, даже если невозможно эту траекторию установить. Такие рассуждения имеют смысл с точки зрения классической физики. В квантовой теории такие рассуждения представляют собой неоправданное злоупотребление языком. В настоящее время мы можем оставить открытым вопрос о том, касается ли это предложение формы высказывания об атомных процессах или самих процессов, то есть касается ли это гносеологии или онтологии. Во всяком случае, при формулировании положений, относящихся к поведению атомных частиц, мы должны быть крайне осторожны.

Фактически мы вообще не можем говорить о частицах. Целесообразно во многих экспериментах говорить о волнах материи, например о стоячей волне вокруг ядра. Такое описание, конечно, будет противоречить другому описанию, если не учитывать границы, установленные соотношением неопределённостей. Этим ограничением ликвидируется противоречие. Применять понятие «волна материи» целесообразно в том случае, если речь идёт об излучении атома. Излучение, обладая определённой частотой и интенсивностью, даёт нам информацию об изменяющемся распределении зарядов в атоме; при этом волновая картина ближе стоит к истине, чем корпускулярная. Поэтому Бор советовал применять обе картины. Их он назвал дополнительными. Обе картины, естественно, исключают друг друга, так как определённый предмет не может в одно и то же время быть и частицей (то есть субстанцией, ограниченной в малом объёме) и волной (то есть полем, распространяющимся в большом объёме). Но обе картины дополняют друг друга. Если использовать обе картины, переходя от одной к другой и обратно, то в конце концов получится правильное представление о примечательном виде реальности, который скрывается за нашими экспериментами с атомами.

Бор при интерпретации квантовой теории в разных аспектах применяет понятие дополнительности. Знание положения частицы дополнительно к знанию её скорости или импульса. Если мы знаем некоторую величину с большой точностью, то мы не можем определить другую (дополнительную) величину с такой же точностью, не теряя точности первого знания. Но ведь, чтобы описать поведение системы, надо знать обе величины. Пространственно-временное описание атомных процессов дополнительно к их каузальному или детерминистскому описанию. Подобно функции координат в механике Ньютона, функция вероятности удовлетворяет уравнению движения. Её изменение с течением времени полностью определяется квантово-механическими уравнениями, но она не даёт никакого пространственно-временного описания системы. С другой стороны, для наблюдения требуется пространственно-временное описание. Однако наблюдение, изменяя наши знания о системе, изменяет теоретически рассчитанное поведение функции вероятности.

Вообще дуализм между двумя различными описаниями одной и той же реальности не рассматривается больше как принципиальная трудность, так как из математической формулировки теории известно, что теория не содержит противоречий. Дуализм обеих дополнительных картин ярко выявляется в гибкости математического формализма. Обычно этот формализм записывается таким образом, что он похож на ньютонову механику с её уравнениями движения для координат и скоростей частиц. Путём простого преобразования этот формализм можно представить волновым уравнением для трёхмерных волн материи, только эти волны имеют характер не простых величин поля, а матриц или операторов. Этим объясняется, что возможность использовать различные дополнительные картины имеет свою аналогию в различных преобразованиях математического формализма и в копенгагенской интерпретации не связана ни с какими трудностями. Затруднения в понимании копенгагенской интерпретации возникают всегда, когда задают известный вопрос: что в действительности происходит в атомном процессе? Прежде всего, как уже выше говорилось, измерение и результат наблюдения всегда описывается в понятиях классической физики. То, что выводится из наблюдения, есть функция вероятности. Она представляет собой математическое выражение того, что высказывания о возможности и тенденции объединяются с высказыванием о нашем знании факта. Поэтому мы не можем полностью определить результат наблюдения. Мы не в состоянии описать, что происходит в промежутке между этим наблюдением и последующим. Прежде всего это выглядит так, будто мы ввели субъективный элемент в теорию, будто мы говорим, что то, что происходит, зависит от того, как мы наблюдаем происходящее, или по крайней мере зависит от самого факта, что мы наблюдаем это происходящее. Прежде чем разбирать это возражение, необходимо совершенно точно выяснить, почему сталкиваются с подобными трудностями, когда стараются описать, что происходит между двумя следующими друг за другом наблюдениями. Целесообразно в этой связи обсудить следующий мысленный эксперимент. Предположим, что точечный источник монохроматического света испускает свет на чёрный экран, в котором имеются два маленьких отверстия. Поперечник отверстия сравним с длиной волны света, а расстояние между отверстиями значительно превышает длину волны света. На некотором расстоянии за экраном проходящий свет падает на фотографическую пластинку. Если этот эксперимент описывать в понятиях волновой картины, то можно сказать, что первичная волна проходит через оба отверстия. Следовательно, образуются две вторичные сферические волны, которые, беря начало у отверстий, интерферируют между собой. Интерференция произведёт на фотографической пластинке полосы сильной и слабой интенсивности — так называемые интерференционные полосы. Почернение на пластинке представляет собой химический процесс, вызванный отдельными световыми квантами.

5
Перейти на страницу:
Мир литературы