Выбери любимый жанр

Кто вы? - Петрович Николай Тимофеевич - Страница 10


Изменить размер шрифта:

10
Кто вы? - i_025.png

Все это делает несколько более вероятным появление таких роботов в просторах той или иной звезды, чем живых колумбов космоса. Надо следить за сигналами, приходящими на Землю извне. Может, такие роботы давно нам сигналят, но мы их не слышим. Мы слабо следим за небом.

Радиоконтакт

Как будет показано ниже, радиоволна и есть тот идеальный галактический корабль, который так нужен нам для контакта. Он движется со скоростью света. Не требует разгона и торможения. Не подвержен действию сил тяготения. Принципиальный его недостаток — он не может перевозить материальные тела. Единственный груз, который на него можно взвалить, — информация.

А разве этого мало? Любой накопленный опыт в освоении законов природы или в социальном устройстве общества можно передать с помощью информации.

В создании этого галактического радиокорабля имеются свои трудности. Но они неизмеримо меньше, чем при организации прямых контактов или контактов роботами.

Поэтому дальнейшие главы книги будут посвящены именно этому виду контактов.

Глава II

В джунглях… колебаний и волн

Кто вы? - i_026.png

Мир, в котором мы живем, удивительно склонен к колебаниям.

Из учебника физики
Иного нет у нас пути…

Итак, мы хотим построить радиомост к другим цивилизациям. Первая глава утверждает, что нам есть к кому строить этот мост. Следовательно, необходимое условие — наличие хотя бы двух корреспондентов, — вероятно, выполняется. Теперь нам надо сделать второй шаг: оценить, можно ли это практически осуществить; можно ли заставить радиоволну преодолеть невероятно большие расстояния, пройти сквозь все виды помех и принести привет из одного мира в другой.

В этом и состоит проблема радиоконтакта.

Но прямо шагнуть к ней нам не удастся. Ее окружают джунгли, заросли и сплетения из разных колебаний и волн: быстрых и медленных, затухающих и нарастающих, волн радио и световых, плавных и пилообразных.

Кто вы? - i_027.png

Попробуем, читатель, вместе продраться сквозь эти заросли, и пусть это будет разминкой перед атакой основного вопроса. По дороге я расскажу об избранных представителях этого мира колебаний, так как из этой не видимой глазом «растительности» и творит радиотехник свои чудеса, из них и придется возводить радиомост. Этот мост будет самым грандиозным творением и по масштабам и по тайнам, которое оно раскроет.

Воздвигнуть его можно, только ведя работы с двух сторон. Но сначала нам надо преодолеть зону джунглей. Более легкого пути к проблеме нет, как не нашел Птолемей I легкого царственного пути к познанию геометрии, минуя изучение основных ее теорем.

Крик новорожденного

Едва появившись на свет, еще не раскрыв свои глаза, малыш поднимает крик на всю округу. Ему жаль покинутого уютного местечка, а чудеса комфорта современного мира еще неизвестны.

Как появляется этот звук?

Вибрация эластичных голосовых связок вызывает колебания воздуха. Эти колебания излучаются ртом, распространяются в окружающей среде, и мы слышим крик малыша.

Раскрыв глаза, ребенок видит свет. Он воспринимает световые волны, поступающие от Солнца или лампочки. Так, не имея еще никаких понятий об окружающем мире, а тем более о колебаниях, ребенок рефлекторно излучает и принимает их.

Подрастая, этот молодой землянин будет сталкиваться все с новыми и новыми видами колебаний. Бросая камни в воду, он будет вызывать расходящиеся кругами волны. При этом далеко не всегда он будет следовать полезному совету Козьмы Пруткова: «Бросая в воду камешки, смотри на круги, ими образуемые; иначе такое бросание будет пустою забавою».

Раскачиваясь из стороны в сторону на макушке дерева (до чего здорово!), он совершает вместе с ним механические колебания.

Звонок об окончании урока временами ему будет казаться лучшей музыкой. Я до сих пор помню замирания сердца в ожидании этих спасительных звуковых колебаний в дни опросов. Часто выручало центральное положение буквы «П». Но зато трепетать приходилось и при опросе «сверху» (с буквы А), и при опросе «снизу».

С электромагнитными колебаниями, или радиоволнами, молодая человеческая поросль теперь часто знакомится раньше, чем с букварем. Это заслуга домашних полуроботов — радиоприемников и телевизоров (третьи лица — родители — из этого процесса обычно самоустраняются).

Наконец, каждый человек имеет свой генератор ритмичных колебаний — сердце. Тысячелетиями даже мгновенная остановка этого генератора означала обрыв нити жизни. Последнее время человек в ряде случаев научился внешним толчком в несколько тысяч вольт снова пускать его в ход. Сделано несколько замен хлюпающего аритмичного генератора более молодым. Идет разработка миниатюрного генератора для подмены природного сработавшегося. Фразы «у него нет сердца», «у него холодное сердце» в недалеком будущем, наверное, будут звучать иначе — «у него транзисторное сердце».

Примеры встречающихся в природе и технике колебаний легко приумножить до сотен и тысяч. Но мы не пойдем, читатель, по этой тропе, поросшей скукой. Она ведь тоже мочалит наш источник колебаний. Нет ли компаса для ориентировки в этих джунглях колебаний?

Есть! Присмотримся к любому колебательному движению, например к колебаниям ног идущего или бегущего человека. Посылается правая вперед, левая остается сзади. Затем выбрасывается левая вперед, правая остается сзади (за счет перемещения тела). Это и есть один цикл колебаний. Значит, ходьба и бег есть результат простого периодического раскачивания в противофазе двух маятников — ног, «закрепленных в одной точке». Чем больше циклов мы делаем в секунду, тем большее пространство преодолеваем. Вот это число совершаемых циклов или колебаний в секунду и есть универсальный компас в мире колебаний. Имя его — частота колебаний.

Кто вы? - i_028.png

Медленно гуляющий человек совершает, скажем, один цикл (два шага) в секунду. Такую частоту приняли за единицу и назвали герцем. Ноги спринтера колеблются значительно быстрее, и их частота достигает 15–20 герц.

Часто важно знать время, за которое совершается один цикл колебаний. Разделив одну секунду на частоту колебаний, мы получим эту величину: ее называют периодом колебаний.

Как-то я пытался выяснить у студента, куда движутся электроны в батарейке карманного фонаря: от плюса к минусу или наоборот. За 40 секунд нашего спора он ухитрился изменить свое мнение на обратное четыре раза. Средний период его колебаний «не так уж велик»:

T = 40/4 = 10 секунд.

Отсюда их частота F = 0,1 герца.

Всякое движение, в том числе и колебательное, происходит во времени. Наблюдая положение или состояние колеблющегося тела в разные моменты времени, можно легко выявить периодичность и форму колебаний. Особенно наглядна их графическая запись. Проходя как-то мимо стройки, я увидел, что на ленте транспортера происходит запись некоего колебания. Вопли сверху открыли секрет. Ситуацию можно было назвать: «НОТ в действии». Маляр, развлекая свою очаровательную помощницу, раскачивал ее в люльке, как на качелях. С забытой кисти стекала краска. Она-то и отмечала положение качелей в разные моменты времени. На ленте мы видим волнообразную кривую, имеющую красивое, звучное имя — синусоида (вполне подходящее имя для гибкой, стройной девушки, не так ли?).

10
Перейти на страницу:
Мир литературы