Выбери любимый жанр

Тайны памяти (с иллюстрациями) - Сергеев Борис Федорович - Страница 33


Изменить размер шрифта:

33

Приспособиться под силу только человеку. Впервые это испытал на себе английский психолог Д. Стрэттон. Первые отчетливые признаки переучивания появились у него на четвертый день ношения «перевертывающегося» приспособления. (Стрэттон носил линзу на одном глазу, а другой закрывал темной повязкой.) На пятый день он мог свободно гулять в своем саду, а на седьмой – начал вновь получать удовольствие от красоты окружающего пейзажа.

Тайны памяти (с иллюстрациями) - p072_1.png

Приспособиться очень помогали остальные органы чувств. Если воробей молчал, он казался прыгающим по дорожке сада, но, как только раздавалось чириканье, Стрэттон сразу же замечал, что птица находится на дереве. Правильно видеть движущиеся предметы было легче, чем неподвижные. Экипаж, стоящий у подъезда, казался перевернутым вверх колесами, но, как только он трогался с места, сразу же обретал правильное положение. Если стенные часы останавливались, они начинали казаться перевернутыми, но, пока маятник качался, воспринимались правильно.

В конечном итоге после нескольких дней ношения очков, переворачивающих изображение, люди начинают видеть окружающий мир вполне правильно и даже способны водить машину, только нужно вести активный образ жизни. Специальный эксперимент подтверждает это утверждение. Два человека одновременно надели переворачивающие очки. Один из них свободно передвигался и мог делать все, что хотел. Второй все время находился в кресле на колесиках с заложенными за спину руками. Ничего делать сам он не имел права. Возил его, кормил и ухаживал первый испытуемый. Переучивание произошло только у активного испытуемого. Пассивный не продвинулся ни на шаг.

Устройство детекторов несложно, но они могут по очень простым признакам узнавать нужный предмет. Наиболее впечатляющий пример – детекторы метро. Они опознают человека по тени. Детектор не способен отличить тень человека от тени верблюда, но ошибки редки, так как в узких проходах, ведущих к эскалатору, верблюдам быть не положено. Простые детекторы могут быть использованы для распознавания сложных изображений. Еще в 1959 году американец Л. Хармон сконструировал анализатор, способный почти безошибочно распознавать цифры от нуля до девяти, написанные от руки словами на английском языке (0 – nought, 1 – one, 2 – two, 3 – three, 4 – four, 5 – five, 6 – six, 7 – seven, 8 – eight, 9 – nine).

Принцип был очень прост. Машина подсчитывала, сколько раз перо поднялось выше или опустилось ниже общего уровня строчки, вычерчивая h, g, f и t, выясняла, поставлены ли точки над i и черточки на t, да, пожалуй, еще прикидывала общую длину слова. Вот как просто разобраться в самом неразборчивом почерке.

Детекторы зрительной системы человека перекочевали в мозг. Там зрительная информация последовательно развертывается на нескольких экранах, причем каждый последующий обычно больше предыдущего. Поэтому изображение каждый раз увеличивается и становится более разборчивым.

Первые экранные структуры – в заднем ядре наружного коленчатого тела. Так как в ядре 6 слоев клеток, то и экранов 6. Половина их (1, 4 и 6-й слои) получают информацию от глаза той же стороны тела, остальные от противоположного, 4/5 площади каждого экрана занимает проекция центральных отделов сетчатки. На 1/5 пространства теснятся ее остальные части. Кроме того, на обращенных внутрь участках экранов зеркально дублирована проекция его наружных частей. Итак, только на первом этапе мозговой обработки зрительной информации изображение дублируется на 24 экранах.

Последующие отделы мозговой части зрительного анализатора тоже обильно экранизированы. Здесь и сосредоточены детекторы. Одни из них обнаруживают движущиеся объекты и определяют направление. Это значит, что нервные клетки отвечают активностью только в случае определенного направления движения. У кролика и кошки большая их часть занята уточнением направления движения в горизонтальной плоскости. У белки-летяги, живущей на деревьях, оба вида детекторов (движения в горизонтальной и вертикальной плоскостях) представлены в одинаковых количествах.

Реакция детекторов направления тем сильнее, чем быстрее движутся предметы. Особенно сильная реакция возникает, если движущийся объект пересекает вертикальный диаметр зрительного поля и удаляется к периферии. Для кошки это значит: «Не зевай, а то упустишь добычу». Для кролика: «Уф, кажется, на этот раз пронесло». Если детекторы движения разрушить, все животные, кроме обезьян, теряют способность следить за двигающимся предметом, как бы он их ни интересовал.

У крыс найдены детекторы освещенности. В отличие от большинства детекторов зрительной системы они реагируют возбуждением на длительно действующие раздражители. После их разрушения животные теряют способность различать яркость света и точно оценивать площадь освещенной поверхности.

Верховным зрительным центром млекопитающих, безусловно, является затылочная кора. Она разделена на три зрительные области: 17, 18 и 19-е поля. Это первичная, вторичная и третичная зрительные области. Вторичные поля получают информацию от 17-го поля (поэтому оно и называется первичным). Кроме того, у кошек и собак в зрении участвуют теменные отделы коры, у человека и обезьян – височные.

Кора головного мозга – слоистая структура. Волокна, несущие зрительную информацию, ветвятся здесь в радиусе 100–200 микрон, вступая в контакт с 5 тысячами нейронов каждый. Нервные клетки разных слоев коры, находящиеся друг над другом, объединяются в вертикальные столбики. К ним посылает свою информацию огромное количество нейронов из всех отделов мозга, занятых обработкой зрительной информации. Возможно, в колонках объединяются все свойства видимого изображения: цвет, объемность, размер, удаленность и другие.

В коре млекопитающих обнаружены детекторы, реагирующие на линию, если хотя бы один ее конец окажется в поле зрения. Другие детекторы реагируют только на появление двух линий, оценивая величину угла между ними. Существуют детекторы, измеряющие степень кривизны линий. Более сложные корковые детекторы способны запомнить и узнать предмет, если его ориентация в пространстве не изменится, на какое бы место сетчатки ни упало изображение.

Функциональная единица коры – рецептивное поле. У кошек и обезьян обнаружено три типа полей: простые, сложные и сверхсложные. Рецептивные поля имеют вытянутую форму и реагируют на что угодно, кроме изменения освещенности. Простые рецептивные поля разделены на две или три полоски – зоны. Одна из них возбудительная, а к ней (иногда с двух сторон) примыкают тормозные. Такое устройство рецептивных полей очень помогает им выискивать прямые линии.

Предположим, что для обнаружения линии необходим сигнал ста нейронов рецептивного поля. Не будь тормозных зон, потребовалось бы, чтобы прореагировало сто нейронов из возбудительной зоны. Тормозные зоны берут часть работы на себя, увеличивая чувствительность рецептивного поля. Они как бы сообщают мозгу, что ничего не видят, что линия находится где-то сбоку. Значит, она действительно прямая, а не волнистая и не залезает на территорию тормозных зон. С их помощью линия будет опознана, если в обеих частях рецептивного поля отреагирует по 50 нейронов.

В простое корковое рецептивное поле коры посылают информацию несколько рецептивных полей сетчатки, расположенных по прямой линии. Когда линия ляжет вдоль рецептивных полей сетчатки, возникнет ответ в соответствующем рецептивном поле коры больших полушарий. Таким образом, каждое простое рецептивное поле коры отвечает на раздражитель, появившийся только в определенном районе сетчатки. Простые рецептивные поля одной ориентации располагаются друг над другом, что позволяет следить за движением прямой линии.

В сложных рецептивных полях возбудительных и тормозных зон не удается обнаружить. Они объединяют информацию от простых рецептивных полей и поэтому реагируют на прямую линию, где бы она ни появилась. В свою очередь, сверхсложные поля обобщают показания нескольких сложных полей, обнаруживая углы, концы отрезков прямой, отвечая возбудительной реакцией на линии одних направлений и тормозной – на линии, находящиеся к ней под определенным углом.

33
Перейти на страницу:
Мир литературы