Выбери любимый жанр

Путешествие по недрам планет - Зигель Феликс Юрьевич - Страница 6


Изменить размер шрифта:

6

Если бы только Солнце было источником нагрева Урана и Нептуна, то их поверхности имели бы соответственно температуры —220 и —230 °C. Однако, судя по радиоизлучению этих планет, они несколько теплее (—150 и — 170 °C). Несомненно, что источником нагрева служат горячие недра этих планет. По теоретическим подсчетам в центре Урана при давлении около 600 тыс. МПа температура достигает 10–12 тыс. градусов. Недра Нептуна несколько горячее — при давлении 700–800 тыс. МПа они имеют температуру 12–14 тыс. градусов.

Судя по данным спектрального анализа, атмосферы Урана и Нептуна наполовину состоят из молекулярного водорода Н2. Там же присутствуют метан (20 %) и аммиак (не менее 5 %). Остальное приходится на долю гелия, этана, ацетилена и, возможно, водяных паров.

Массы Урана и Нептуна примерно в 20 раз меньше массы Юпитера, но этого различия вполне достаточно для изменения внутренней структуры планеты. В отличие от Юпитера и Сатурна недра Урана и Нептуна лишь на 20 % состоят из водорода и гелия, а остальное приходится на более тяжелые элементы, входящие главным образом в железосиликаты.

Сведения об этих далеких планетах далеко не полны и потому модели их внутреннего строения носят сугубо предварительный характер. Так, по одной из них, Уран (см. рис. 2,б) и Нептун имеют твердые железосиликатные ядра, составляющие примерно 80 % массы этих планет. Поперечники этих недр близки к 16 000 км, что значительно больше диаметра Земли. Каждое из ядер окружено сферическим слоем льда толщиной 8 000 км. Наружные газовые оболочки Урана и Нептуна имеют толщину около 9 000 км и кроме молекулярного водорода включают в себя метан, аммиак и другие перечисленные выше элементы.

По некоторым моделям, атмосфера Урана и Нептуна в нижних своих слоях под большим давлением переходит в жидкое состояние. Этот глобально водородно-гелиевый океан имеет своеобразное дно — очень толстый слой ледяной мантии, содержащий, кроме обычного льда, также твердые «льды» метана и аммиака. Не вполне ясно и состояние ядер Урана и Нептуна — некоторые астрофизики считают их жидкими.

Совсем недавно стало известно, что вокруг Урана и Нептуна есть кольца такой же природы, как у Юпитера и Сатурна. Эти открытия сделаны с помощью наземных фотоэлектрических средств при наблюдении видимых покрытий звезд этими планетами. Оказалось, что Уран окружен девятью очень узкими и тонкими темными кольцами. Их частицы чернее сажи, а ширина в среднем близка всего к 10 км. Расположены они в плоскости экватора, и край самого далекого кольца отстоит от Урана на 51 000 км (почти два радиуса планеты). Никаких подробностей о кольце Нептуна пока нет — наблюдения лишь доказали его существование.

Уран и Нептун представляют собой промежуточные тела между «полузвездами», именуемыми нами Юпитером и Сатурном, и планетами земного типа.

НАША УДИВИТЕЛЬНАЯ ПЛАНЕТА

Мы живем точно во сне неразгаданном

На одной из удобных планет…

Игорь Северянин
Путешествие по недрам планет - i_010.jpg

Долгое время господствовало убеждение, что в Солнечной системе Земля — лишь одна из обитаемых планет. Фантазия неселяла разумными обитателями не только Марс, но и Венеру и даже планеты-гиганты. Космонавтика положила конец этим иллюзиям. Сегодня уже никто не сомневается в том, что мы, люди, одиноки в Солнечной системе и в этом отношении Земля уникальна. Больше того, оказалось, что остальные планеты разительно отличаются от нашей и ни на одной из них человек не смог бы существовать без искусственных средств жизнеобеспечения.

Этот факт, несомненно, связан с особенностями формирования Земли и ее эволюции как планеты. Мы живем на поверхности Земли, и это обстоятельство очень облегчает не только познание ее недр, но и выяснение всех деталей ее истории. Зарождение биосферы и ее роль в геологической истории Земли — события, определившие нынешний облик нашей планеты. Вот почему недра Земли тесно связаны с историей всех ее оболочек до атмосферы включительно. Лишь в конце этого раздела мы постараемся взглянуть на Землю извне.

Путешествие по недрам планет - i_011.jpg
 Что там, внутри?

Непосредственное изучение земных недр имеет пока весьма ограниченный характер. Самая глубокая из проектируемых шахт достигает глубины всего 2 км. Ясно, что такой способ исследования недр может дать сведения лишь о самых поверхностных слоях земной коры.

Но существуют различные методы изучения недр Земли. Как известно, период колебания маятника определяется формулой T = 2π(l/g)1/2, где l — длина маятника; g— ускорение свободного падения, которое зависит от расстояния маятника до центра Земли и от центробежной силы в данной точке земного шара. Так как Земля представляет собой сплюснутый у полюсов шар, или, точнее, сфероид, его полюсы на 21 км ближе к центру Земли, чем точки экватора. Точные измерения показывают, что ускорение свободного падения на северном полюсе составляет 983,234 см/с2, а на экваторе оно на 5,2 см/с2 меньше. Около 2/3 этой величины вызвано вращением Земли, а 1/3 — ее сплюснутостью.

Отсюда следует, что маятник в принципе позволяет изучать форму Земли по величине ускорения свободного падения в разных точках ее поверхности. Этим занимается специальная наука — гравиметрия, в распоряжении которой есть высокоточные маятниковые приборы. Следует заметить, что ныне маятниковый метод применяется лишь для решения некоторых специальных задач. Абсолютные же измерения ускорения g выполняют методом свободного падения тел в вакууме. Так как при таких измерениях используют лазерные интерферометры и кварцевые часы, точность их весьма высока — средняя квадратическая погрешность не превышает 10-7 м/с2.

Гравиметрия позволяет измерить сжатие Земли (1/298,3), а также ее безразмерный момент инерции (0,331), что очень важно для построения модели внутреннего строения нашей планеты. Но гравиметрия способна и на нечто большее. Представьте себе два одинаковых маятника А и В. Под первым из них находятся породы повышенной плотности, например руды, под маятником В — пустота (скажем, пещера). Ясно, что маятник А будет сильнее притягиваться Землей, чем маятник В, а значит, и колебаться быстрее. Таким образом, гравиметрические приборы могут успешно выступать в роли разведчиков полезных ископаемых. С их помощью удается выяснить и некоторые детали строения земной коры.

Методами, позволяющими проникнуть в Землю до любых глубин, т. е. иначе говоря, до ее центра, располагает другая наука — сейсмология. Она изучает распространение в твердом теле Земли волн, вызванных землетрясениями — естественными или искусственными. Чтобы разобраться в причинах и следствиях землетрясений, надо вспомнить кое-что об упругости и волнах.

Если тело после снятия внешней нагрузки принимает первоначальную форму, то его называют упругим. В этом случае говорят об упругой деформации тела. Если же внешние силы необратимо меняют форму тела, то его деформация будет неупругой. Примером безусловно упругого тела является резина — недаром ее используют в различных амортизаторах. Такими же упругими свойствами обладают струна гитары, стальная пружина и ряд других твердых тел. Кусок мягкой глины или замазки может, наоборот, служить типичным примером неупругого тела.

Процесс распространения колебаний в упругой среде реализуется в виде волн, т. е. периодических перемещений частиц среды. При этом каждая из частиц колеблется около некоторого среднего положения равновесия. Когда говорят о фронте волны, подразумевают поверхность, отделяющую колеблющиеся частицы от тех частиц, которые еще не вовлечены в колебательное движение. Если фронт волны является плоскостью, то волна называется плоской, если фронт волны представляет собой сферу, то волна называется сферической. Различают волны двух типов — продольные и поперечные. В первом случае колебания отдельных частиц происходят в направлении распространения волны. В поперечных волнах частицы колеблются в плоскостях, перпендикулярных к направлению волны. В сущности, продольная волна — это чередование сгущений и разрежений упругой среды. Продольные волны возможны в газах, жидкостях и твердых телах. Что касается поперечных волн, то они наблюдаются или в твердых телах, или на границе раздела двух жидкостей, либо жидкости и газа (например, на поверхности воды). Если колебания распространяются вдоль прямой, эту прямую называют лучом. Колебания могут распространяться и вдоль кривых.

6
Перейти на страницу:
Мир литературы