Сверхзвуковые самолеты - Цихош Эдмунд - Страница 17
- Предыдущая
- 17/136
- Следующая
Соединение фюзеляжа со стреловидным или треугольным крылом также может создавать значительное волновое сопротивление. Для его уменьшения эти соединения выполняются так, чтобы не происходило наложения друг на друга локальных областей пониженного и повышенного давлений.
С этой точки зрения одним из важнейших достижений первого периода развития сверхзвуковых самолетов было установление так называемого правила площадей, состоящего в том, что комбинация крыла с фюзеляжем обладает наименьшим сопротивлением, когда распределение нормальных к потоку сечений по длине самолета имеет тот же характер, что и у тела вращения наименьшего сопротивления. Практически это означает уменьшение сечений фюзеляжа в области крыла на величину, равную площади соответствующего нормального к потоку сечения крыла. Эффективность правила площадей в отношении уменьшения волнового сопротивления зависит, конечно, помимо фюзеляжа, и от других частей самолета, тем не менее наилучшие результаты достигаются при вытянутых фюзеляжах и коротких тонких крыльях. Особенно это касается крыльев с малым удлинением, обтекание которых является пространственным и имеет тенденцию к осевой симметрии. В связи с этим в некоторых самолетах, как бы «от природы» соответствующих упомянутому правилу, можно почти полностью пренебречь характерным сужением фюзеляжа (как, например, у английского самолета «Лайтнинг»). Это происходит потому, что каждый из факторов, уменьшающих волновое сопротивление (малая относительная толщина профиля, большая стреловидность, малое удлинение крыла), является определенным шагом в направлении выполнения правила площадей, т.е. самолет, выполненный с соблюдением требований аэродинамики, приближается по форме к геометрическому телу с малым аэродинамическим сопротивлением.
Невысокая эффективность правила площадей в отношении самолетов с М =› 2 иногда служит поводом к отрицанию его, тем более что выполнение этого правила ведет к увеличению стоимости изготовления планера самолета, а также к уменьшению полезного объема фюзеляжа. Кроме того, многие современные самолеты располагают такой тяговооруженностью, что преодоление звукового барьера не представляет для них особой трудности. Однако, с другой стороны, необходимость приспосабливания самолетов, особенно многоцелевых, к долговременным полетам с околозвуковыми скоростями на малой высоте привела к тому, что большинство из них строится в соответствии с правилом площадей, хотя внешне это и не всегда заметно.
За последние 10-20 лет появились сверхзвуковые самолеты, фюзеляж которых используется для создания подъемной силы. Такой фюзеляж имеет форму не тела вращения (конус-цилиндр-конус), а параллелепипеда. Это означает замену круглого или овального поперечного сечения фюзеляжа сечением, близким к прямоугольному, причем одна из больших сторон прямоугольника образует нижнюю часть фюзеляжа, которая и играет роль дополнительной несущей поверхности. Изменению подвергся также и профиль самолета. Использовавшаяся ранее форма днища фюзеляжа с кривизной, очерченной практически дугой одного радиуса, была заменена формой с кривизной, описываемой тремя дугами, создающими выпуклость носовой и хвостовой частей и вогнутость средней части. Фюзеляж, обладающий такой формой, получил название несущего. Характерной чертой фюзеляжей этого типа является еще и то, что фюзеляжная часть планера у таких самолетов значительно больше. Несущие фюзеляжи имеют самолеты F-4, F-5, SR-71A, F-111A, Е-266, «Ягуар» и др.
Другой, не менее характерной чертой сверхзвуковых самолетов является применение фюзеляжей с носовой частью, значительно выдвинутой вперед. Конечно, такое размещение больших масс вдоль оси самолета повлекло за собой существенное уменьшение отношения момента инерции относительно продольной оси к моментам инерции относительно других осей. Заметное удлинение самолета в сравнении с его размахом (длина фюзеляжа, отнесенная к размаху крыла, находится в пределах от 1,6 для самолета F-102A до 2,6 для самолета Х-3) не только ухудшило маневренность в вертикальной плоскости, но также затруднило поперечную управляемость ввиду слишком быстрого прироста угловой скорости при отклонении элеронов и управляемость по курсу вследствие возникновения эффектов обратного действия руля направления.
Общая схема самолета
Эволюция как крыла, так и фюзеляжа сверхзвукового самолета еще не завершена. Разнообразие возможных путей поиска и найденных конструктивных решений привело к большому разнообразию схем и конструкций сверхзвуковых самолетов.
Взаимное положение частей планера и их назначение определяют аэродинамическую схему самолета. Выбор соответствующей схемы и форм частей планера обеспечивает определенные аэродинамические, прочностные, массовые, тактико-технические и прочие характеристики, т. е. определенные функциональные свойства самолета в процессе его эксплуатации. В большинстве построенных до настоящего времени самолетов (62) принята классическая (нормальная) схема как наиболее всесторонне исследованная и оправдавшая себя на практике и лишь в двух случаях принята схема «утка» (XFV-12A и «Мираж» 4000). В остальных 24 случаях использована схема без горизонтального оперения («бесхвостка»), но в модификациях, сохраняющих достоинства классической схемы с одновременным исключением ее недостатков. Таким путем были разработаны аэродинамические схемы самолетов со свойствами, промежуточными между схемами «утка» и «бесхвостка». Это самолеты «Гриффон», ХВ-70А, F-4CCV, YF-16CCV и «Кфир» С2 со стационарными либо подвижными дополнительными поверхностями, «Мираж-Милан», Ту-144 и F-14 с убираемыми дестабилизаторами, а также «Вигген», выполненный по схеме биплан-тандем.
Рис. 1.24. Характерные формы фюзеляжа сверхзвуковых самолетов (масштаб 1 :200, для ХВ- 70А-масштаб 1 :400).
Рис. 1.25. Американские самолеты с несущим фюзеляжем.
Вверху F-5A, внизу SR-71A.
Рис. 1.26. Американский самолет «Валькирия» ХВ-70А с опущенными (вверху) и поднятыми (внизу) концевыми частями крыла.
Принятая аэродинамическая схема самолета обычно свидетельствует об индивидуальности конструктора, но тем не менее она всегда опирается на глубокий теоретический анализ и экспериментальные исследования, и ее принятие обусловлено рациональными предпосылками. Например, в самолете ХВ-70А с проектной крейсерской скоростью М = 3 использовано треугольное в плане крыло с отклоняемыми концевыми частями. При малых скоростях они образуют единую плоскость с основными частями крыла, благодаря чему при взлете и посадке удельная нагрузка на крыло меньше, а подъемная сила больше. При полете с большей скоростью концы крыла отклоняются вниз, что обеспечивает необходимую продольную устойчивость самолета (центр давления крыла оказывается ближе к центру тяжести самолета), а также позволяет обойтись горизонтальным оперением с поверхностью, почти вдвое меньшей, чем требуется обычно для условий сверхзвукового полета. Использование крыла такой конструкции приводит к уменьшению сопротивления самолета ввиду меньшего балансировочного сопротивления и сопротивления трения. Дестабилизирующая же плоскость (переднее крыло) во время взлета и посадки самолета ХВ-70А выполняет роль дополнительной несущей поверхности, размещенной перед центром тяжести самолета, что позволяет выполнять эти этапы полета на больших углах атаки без необходимости отклонения элевонов кверху (и уменьшения в связи с этим подъемной силы крыла).
- Предыдущая
- 17/136
- Следующая