Выбери любимый жанр

200 знаменитых головоломок мира - Дьюдени Генри Эрнест - Страница 26


Изменить размер шрифта:

26

Шахматная доска

Шахматная доска представляет собой квадратную плоскую поверхность, разделенную прямыми линиями, пересекающимися под прямым углом, на 64 квадрата. Первоначально они не были раскрашены поочередно в черный и белый (или какие-либо два других) цвета, и это усовершенствование было введено, просто чтобы помочь глазу при игре. Польза такой раскраски несомненна. Например, она облегчает манипуляции со слонами, позволяя с одного взгляда оценить, что наш король или пешки на черных клетках не находятся под угрозой вражеского слона, передвигающегося по белым клеткам. И все же раскраска шахматной доски несущественна для самой игры как таковой. Точно так же, когда мы формулируем головоломки на шахматной доске, часто неплохо помнить, что дополнительный интерес может представлять «обобщение» на случай доски с любым числом клеток или ограничение задачи некой конфигурацией клеток, необязательно квадратной. Мы приведем несколько головоломок такого типа.

115. Разбивка шахматной доски. Как-то я задался вопросом: сколькими различными способами можно разбить шахматную доску на две части одинаковой формы и размера, если разрезы проводить по границам клеток? Выяснилось, что эта задача одновременно и занимательна и трудна. Я представляю ее в упрощенном виде, взяв доску меньших размеров.

200 знаменитых головоломок мира - _111.jpg

Очевидно, что доску, состоящую из 4 клеток (2 х 2), можно разделить лишь одним способом (прямой, проходящей через центр), ибо повороты и отражения мы не будем рассматривать как новые решения. В случае доски из 16 клеток (4 х 4) существует 6 различных способов. Они все приведены здесь на рисунке, и читателю не удастся найти еще какое-нибудь решение. Теперь возьмите большую доску, 6 х 6, и попытайтесь определить число способов в этом случае.

116. Львы и короны. Юная леди, которую вы видите на рисунке, при раскройке столкнулась с небольшой трудностью, помочь преодолеть которую предлагается читателю. По неким причинам, о которых она умалчивает, ей нужно разрезать этот квадратный кусок дорогой ткани на 4 части одинаковых размеров и формы, но важно, чтобы в каждой из частей оказалось по льву и по короне. Поскольку леди настаивает на том, чтобы разрезы пришлись только на границы квадратов, она весьма озадачена. Можете ли вы показать ей нужный способ? Существует только один возможный способ раскройки ткани.

200 знаменитых головоломок мира - _112.jpg

117. Доски с нечетным числом клеток. Рассмотрим доски, которые содержат нечетное число клеток. Начнем с доски 3 х 3. Ее можно разрезать на равные части, лишь удалив центральную клетку.

200 знаменитых головоломок мира - _113.jpg

Вполне очевидно, что это можно сделать только одним способом, как показано в случае а. Части А и В имеют одинаковые размеры и форму, и при любом другом способе разрезания получатся такие же части, а, как мы знаем, в подобном случае способы не считаются различными.

Я предлагаю читателю разрезать на две части одинакового размера и формы максимальным числом различных способов доску 5x5 (случай б). На рисунке приведен один из таких способов. Сколько всего существует различных способов? Часть, которая при перевертывании другой стороной кверху принимает ту же форму, что и другая часть, не считается обладающей отличной от нее формой.

118. Задача Великого ламы. Жил некогда Великий лама, у которого была шахматная доска из чистого золота, прекрасно выполненная и, разумеется, огромной ценности. Каждый год в Лхасе среди лам проводился турнир, и тому из них, кому удавалось выиграть у Великого ламы, воздавались большие почести, его имя гравировалось на оборотной стороне доски, а в клетку, где был поставлен мат, вправляли драгоценный камень. После четырех поражений Великий лама умер (возможно, от огорчения).

200 знаменитых головоломок мира - _114.jpg

Новый Великий лама был неважным игроком и предпочитал другие виды невинных развлечений: он больше любил рубить людям головы. Шахматы он считал загнивающей игрой, которая не способствует совершенствованию разума или морали, и полностью отменил турниры. Затем он послал за четырьмя ламами, имевшими дерзость играть лучше Великого ламы, и сказал им:

— Ничтожные варвары, именующие себя ламами! Знаете ли вы меру своей дерзости? Вы осмелились претендовать на то, что в чем-то превосходите моего предшественника?! Возьмите эту доску и прежде, чем рассвет займется над камерой пыток, разрежьте ее на 4 равных части одинаковой формы, чтобы каждая содержала по шестнадцать целых клеток и по одному драгоценному камню! Если вы в сем деле не преуспеете, то, к вашей же печали, мы придумаем другое испытание. Идите!

Четверо лам преуспели в этом на первый взгляд безнадежном деле. Можете ли вы показать, как следует разрезать доску на 4 равных части одинаковой формы, содержащие по драгоценному камню, если разрезы проводить исключительно по границам клеток?

119. Окно аббата. Однажды аббат монастыря святого Эдмондсбери от излишней для его головы «набожности» так занемог, что не в силах был подняться с постели. Он лежал без сна, и голова его беспокойно металась по подушке, отчего внимательные монахи заключили, что их настоятеля беспокоит какая-то навязчивая мысль. Однако никто не решился спросить его, в чем дело, ибо аббат отличался суровым характером и не потерпел бы никаких расспросов. Внезапно он позвал отца Джона, и вскоре этот почтенный монах предстал перед ложем.

200 знаменитых головоломок мира - _115.jpg

— Отец Джон, — сказал аббат, — знаешь ли ты, что я пришел в этот грешный мир в сочельник?

Монах кивнул утвердительно.

— А не говорил ли я тебе, что, родившись в сочельник, я не люблю ничего нечетного?[22] Смотри!

Аббат указал на большое окно трапезной, которое вы видите на рисунке. Монах взглянул на него и задумался.

— Заметил ли ты, что шестьдесят четыре просвета расположены так, что их число вдоль вертикалей и горизонталей четно; но вдоль всех диагоналей, за исключением четырнадцати, их число нечетно? Почему так происходит?

— По правде говоря, отец мой, это лежит в самой природе вещей и не может быть изменено.

— Нет, это следует изменить. Я повелеваю тебе сегодня же закрыть некоторые из просветов так, чтобы число просветов вдоль каждой прямой оказалось четным. Смотри, чтобы это было сделано без промедления, иначе погреба будут заперты на целый месяц и другие не менее тяжкие кары падут на твою голову.

Отец Джон, ломая голову, едва не лишился разума, но, посоветовавшись наконец с одним монахом, искушенным в тайных науках, сумел все же удовлетворить прихоть аббата. Какие просветы были заделаны, чтобы число оставшихся просветов вдоль каждой вертикали, горизонтали и диагонали оказалось четным, а число заделанных просветов при этом было минимальным?

120. Китайская шахматная доска. На какое максимальное число различных частей можно разрезать шахматную доску (все разрезы проводятся только вдоль линий) так, чтобы при этом никакие две части не оказались полностью одинаковыми? Помните, что части, отличающиеся расположением черных и белых клеток, считаются различными. Так, единственная белая клетка отличается от единственной черной клетки; ряд из трех клеток, две из которых белые, а одна черная, отличается от такого же ряда с двумя черными и одной белой клетками и т. д. Если две части нельзя расположить на столе так, чтобы они выглядели совершенно одинаковыми, то они считаются различными; а поскольку на обратной стороне доски рисунок не нанесен, то части нельзя переворачивать другой стороной кверху.

121. Буквы из шахматных клеток. Однажды я развлекался тем, что пытался разрезать обыкновенную шахматную доску на буквы, из которых удалось бы сложить какую-нибудь фразу. На рисунке видно, как мне удалось составить предложение CUT ТНУ LIFE[23] с точками между словами. Однако идеальное предложение должно было бы содержать, конечно, лишь одну точку, но мне не удалось его получить.

26
Перейти на страницу:
Мир литературы