Выбери любимый жанр

Физика для всех. Молекулы - Китайгородский Александр Исаакович - Страница 33


Изменить размер шрифта:

33

На рис. 6.8 показана плотная упаковка шаров (показаны только крайние шары атомных рядов), содержащая простую дисклокацию. Начнем сдвигать вправо верхний блок по отношению к нижнему. Чтобы легче было разобраться в происходящем, мы пометили шары цифрами; шары сжатого слоя помечены цифрами со штрихами. В какой-то исходный момент "трещина" была между рядами 2 и 3; сжатыми были ряды 2' и 3'.

Физика для всех. Молекулы - img_84.jpeg

Рис. 6.8

Как только подействует сила, ряд 2 сдвинется в трещину; теперь шар 3' может "вздохнуть свободно", зато придется сжаться шару 1'. Что же произошло? Вся дисклокация передвинулась влево, и ее движение будет таким же образом продолжаться до тех пор, пока дислокация не "выйдет" из кристалла. Результатом будет сдвиг на один ряд атомов, т. е. такой же результат, как при сдвиге идеального кристалла.

Не приходится доказывать, что дислокационный сдвиг требует намного меньшей силы. В первом случае надо преодолеть взаимодействие между атомами - перекатить все атомные ряды; во втором случае в каждый момент перекатывается лишь один единственный ряд атомов.

Прочность кристалла в предположении сдвига без наличия дисклокаций в сто раз больше значения прочности, наблюдаемой на опыте.

Однако возникает следующая трудность. Как это ясно из рисунка, приложенная сила "выгоняет" дислокацию из кристалла. Значит, по мере увеличения степени деформации кристалл должен становиться все прочнее и, наконец, когда последняя из дислокаций будет удалена, кристалл должен достичь, согласно теории, прочности, примерно в сто раз большей прочности идеального правильного кристалла. Кристалл действительно упрочняется по мере увеличения степени деформаций, но далеко не в сто раз. Спасают положение спиральные дислокации. Оказывается (но здесь читатель должен поверить нам на слово, так как очень трудно иллюстрировать это чертежом), спиральные дисклокаций не так-то просто "выгнать" из кристалла. Кроме того, сдвиг кристалла может происходить с помощью дислокаций обоих типов. Теория дислокаций удовлетворительно объясняет особенности явлений сдвига кристаллических плоскостей. Движение беспорядка вдоль кристалла - вот что такое с современной точки зрения представляет собой пластическая деформация кристаллов.

Твердость

Прочность и твердость не идут друг с другом об руку. Веревочный канат, лоскут сукна, шелковая нить могут обладать весьма большой пррчностью - нужно значительное напряжение, чтобы разорвать их. Разумеется, никто не скажет, что веревка и сукно - твердые материалы. И наоборот, прочность стекла невелика, а стекло - твердый материал.

Понятие твердости, которым пользуются в технике, заимствовано из житейской практики. Твердость - это противодействие внедрению. Тело твердое, если его трудно процарапать, трудно оставить на нем отпечаток. Определения эти могут показаться читателю несколько туманными. Мы привыкли к тому, что физическое понятие выражают числом. Как же это сделать в отношении твердости?

Один весьма кустарный, но в то же время практически полезный способ уже давно используется минерологами. Десять определенных минералов располагают в ряд. Первым стоит алмаз, за ним следует корунд, далее - топаз, кварц, полевой шпат, апатит, плавиковый шпат, известковый шпат, гипс и тальк. Ряд подобран следующим образом: алмаз оставляет царапину на всех минералах, но ни один из этих минералов, не может процарапать алмаз. Это и значит, что алмаз самый твердый минерал. Твердость алмаза оценивается числом 10. Следующий в ряду за алмазом корунд тверже всех других нижестоящих минералов - корунд может их процарапать. Корунду присваивают число твердости 9. Числа 8, 7 и 6 присвоены соответственно топазу, кварцу и полевому шпату на тех же основаниях.

Каждый из них тверже (т. е. может нанести царапину), чем все нижестоящие минералы, и мягче (сам может быть процарапан) минералов, имеющих большие числа твердости. Самый мягкий минерал - тальк - имеет одну единицу твердости.

"Измерение" (приходится это слово брать в кавычки) твердости при помощи этой шкалы заключается в нахождении места интересующего нас минерала в ряду десяти выбранных стандартов.

Если неизвестный минерал можно процарапать кварцем, но сам он оставляет царапину на полевом шпате, то его твердость равна 6,5.

Металловеды пользуются другим способом определения твердости. Стандартной силой (обычно 3000 кгс) при помощи стального шарика диаметром в 1 см на испытуемом материале делается вмятина. Радиус образовавшейся ямки принимается за число твердости.

Твердость по отношению к царапанию и твердость по отношению к вдавливанию не обязательно сочетаются, и один материал может оказаться тверже другого при испытании на царапание, но мягче при испытании на вдавливание.

Таким образом, нет универсального понятия твердости, не зависящего от способа измерения. Понятие твердости относится поэтому к техническим, но не к физическим понятиям.

Звуковые колебания и волны

Мы уже сообщили читателю много сведений о колебаниях, Как колеблется маятник, шарик на пружинке, каковы закономерности колебания струны - этим вопросам была посвящена одна из глав книги 1. Мы не говорили о том, что происходит в воздухе или другой среде, когда находящееся в ней тело совершает колебания. Не вызывает сомнения, что среда не может остаться равнодушной к колебаниям. Колеблющийся предмет толкает воздух, смещает частицы воздуха из тех положений, в которых они находились ранее. Понятно также что дело не может ограничиться влиянием лишь на близлежащий слой воздуха. Тело сожмет ближайший слой, этот слой давит на следующий - и так слой за слоем, частица за частицей приводится в движение весь окружающий воздух. Мы говорим, что воздух пришел в колебательное состояние или что в воздухе происходят звуковые колебания.

Мы называем колебания среды звуковыми, но это не значит, что все звуковые колебания мы слышим. Физика пользуется понятием звуковых колебаний в более широком смысле. Какие звуковые колебания мы слышим - об этом будет рассказано ниже.

Речь идет о воздухе лишь потому, что звук чаще всего передается через воздух. Но, разумеется, нет никаких особых свойств у воздуха, чтобы за ним оказалось монопольное право совершать звуковые колебания. Звуковые колебания возникают в любой среде, способной сжиматься, а так как несжимающихся тел в природе нет, то, значит, частицы любого материала могут оказаться в этих условиях. Учение о таких колебаниях обычно называют акустикой.

При звуковых колебаниях каждая частица воздуха в среднем остается на месте - она совершает лишь колебания около положения равновесия. В самом простейшем случае частица воздуха может совершать гармоническое колебание, которое, как мы помним, происходит по закону синуса. Такое колебание характеризуется максимальным смещением от положения равновесия - амплитудой и периодом колебания, т. е. временем, затрачиваемым на совершение полного колебания.

Для описания свойств звуковых колебаний чаще пользуются понятием частоты колебания, нежели периодом. Частота v = 1/T есть величина, обратная периоду. Единица частоты - обратная секунда (с-1), однако такое слово не распространено. Говорят - секунда в минус первой степени или герц (Гц). Если частота колебания равна 100 с-1, то это значит, что за одну, секунду частица воздуха совершит 100 полных колебаний. Так как в физике весьма часто приходится иметь дело с частотами, которые во много раз больше герца, то имеют широкое применение единицы килогерц (1 кГц = 103 Гц) и мегагерц (1 МГц = 106 Гц).

При прохождении равновесного положений скорость колеблющейся частицы максимальна. Напротив, в положениях крайних смещений скорость частицы, естественно, равняется нулю. Мы уже говорили, что если смещение частицы подчиняется закону гармонического колебания, то и изменение скорости колебания следует тому же закону. Если обозначить амплитуду смещения через s0, а амплитуду скорости через v0, то v0 = 2?s0/T иди ?0 = 2?vs0. Громкий разговор приводит частицы воздуха в колебание с амплитудой смещения всего лишь в несколько миллионных долей сантиметра. Амплитудное значение скорости будет величиной порядка 0,02 см/с.

33
Перейти на страницу:
Мир литературы