Выбери любимый жанр

Гиперпространство - Сапцина Ульяна Валерьевна - Страница 43


Изменить размер шрифта:

43

Виттен вырос в семье физиков. Его отец Луис Виттен — профессор физики в Университете Цинциннати, ведущий специалист по общей теории относительности Эйнштейна. (Вообще-то, его отец временами заявляет, что его величайшим вкладом в физику стало рождение сына.) Его жена Кьяра Наппи занимается теоретической физикой.

Виттен не похож на других физиков. У большинства ученых Роман с физикой начинается сравнительно рано (в среднем и даже в младшем школьном возрасте). Виттен поначалу специализировался на истории в Университете Брандейса и проявлял нескрываемый интерес к лингвистике. Окончив учебу в 1971 г., во время президентской предвыборной кампании он работал в команде Джорджа Макговерна, который даже написал ему рекомендацию в аспирантуру. Виттен публиковал статьи в журналах The Nation и New Republic. (Журнал Scientific American прокомментировал интервью с Виттеном: «Да, бесспорно, самый умный человек в мире — либеральный демократ»[73].)

Как только Виттен избрал своей профессией физику, он рьяно взялся за ее изучение, закончил аспирантуру в Принстоне, преподавал в Гарварде, а в возрасте 28 лет получил должность профессора опять-таки в Принстоне. Кроме того, он удостоился престижной стипендии Макартура (в прессе ее иногда называют «наградой для гениев»). Его работы оказали глубокое влияние на сферу математики. В 1990 г. Виттен был награжден Филдсовской медалью — в мире математики эта награда не менее престижна, чем Нобелевская премия.

Большую часть времени Виттен сидит и смотрит в окно, производя в уме сложные преобразования. Его жена пишет: «Все вычисления он делает только в уме. Мне требуется заполнить выкладками несколько страниц, чтобы разобраться в вопросе. А Эдвард садится за стол, только чтобы вычислить знак минуса или степень двойки»[74]. Виттен говорит: «Большинство людей, не сведущих в физике, вероятно, считают, что физики занимаются преимущественно сложными расчетами, но суть их работы на самом деле не в этом. А в том, что физика — это прежде всего концепции, желание понимать идеи, принципы устройства мира»[75].

Очередной проект Виттена стал самым масштабным и дерзким в его карьере. Новая теория суперструн вызвала в мире физики сенсацию, претендуя на звание теории, способной объединить эйнштейновскую гравитацию с квантовой теорией. Однако Виттена не устраивает нынешняя формулировка теории суперструн. Он поставил перед собой задачу найти истоки теории суперструн, что, возможно, приблизит нас к объяснению момента сотворения. Ключевая особенность этой теории, фактор, придающей ей эффективность и уникальность, — необычная геометрия: струны способны самосогласованно колебаться только в 10 и 26 измерениях.

Что такое частица?

Суть теории струн в том, что она может объяснить природу и материи, и пространства-времени, т. е. природу и «дерева», и «мрамора». Теория струн дает ответы на ряд головоломных вопросов о частицах: например, почему в природе их так много. Чем глубже мы проникаем в мир субатомных частиц, тем больше частиц находим. В нынешнем субатомном «зоопарке» насчитывается несколько сотен частиц, описание их свойств занимает целые тома. Даже Стандартная модель дала нам ошеломляющее количество «элементарных частиц». Теория струн отвечает на этот вопрос, так как струна, которая в 100 квинтиллионов раз меньше протона, совершает колебания, а каждый тип колебаний порождает определенный резонанс или частицу. Струна настолько мала, что резонанс струны и частица почти неразличимы. Только если каким-нибудь способом увеличить частицу, можно увидеть, что это вовсе не точка, а тип колебания струны.

В этой картине каждая субатомная частица соответствует определенному резонансу, возникающему при конкретной частоте. Понятие резонанса знакомо нам в повседневной жизни. Для примера вспомним пение под душем. Даже если от природы нам достался слабый, глуховатый, дрожащий голос, все мы знаем, как легко почувствовать себя звездой оперной сцены в уединенной обстановке душевой кабинки. Это происходит потому, что волны звуков, которые мы издаем, быстро наталкиваются на стены кабинки и отражаются от них. Колебания, без труда вписывающиеся в пространство между стенами, многократно усиливаются и дают резонирующие звуки. Определенные колебания вызывают резонанс, а остальные, волны которых имеют неподходящий размер, гасятся.

Или же представим себе скрипичную струну, способную вибрировать с разными частотами, издавая звуки, соответствующие нотам ля, си и до. Струна издает вибрации, которые гаснут по мере приближения к ее концам (так как струна закреплена с обоих концов), и совершают целое число колебаний между ними. В принципе струна может вибрировать с любой частотой из бесконечного множества. Нам известно, что ноты сами по себе — не принципиальны. Нота ля не более существенна, чем нота си. Главное — это сама струна. Незачем изучать каждую ноту отдельно от остальных. Зная, как вибрирует струна скрипки, мы сразу понимаем свойства бесконечного множества музыкальных нот.

Так и частицы Вселенной сами по себе не фундаментальны. Электрон не более фундаментален, чем нейтрино. Они кажутся фундаментальными только потому, что нашим микроскопам недостает мощности для выявления структуры этих частиц. Согласно теории струн, если мы каким-то образом увеличим точечную частицу, то увидим маленькую вибрирующую струну. В сущности, эта теория гласит, что материя — не что иное, как гармонии, созданные колеблющейся струной. Поскольку количество гармоний, которые можно составить для скрипки, бесконечно, из вибрирующих струн образуется бесконечное множество форм материи. Этим объясняется обилие частиц в природе. Законы физики можно сравнить с законами гармонии применительно к струне. А саму вселенную, состоящую из бесчисленного множества колеблющихся струн, уподобить симфонии.

Теория струн может объяснить природу не только частиц, но и пространства-времени. Перемещаясь в пространстве-времени, струна совершает сложную последовательность движений. Струна может распасться на более мелкие струны или столкнуться с другими и образовать длинную струну. Ключевой момент в том, что все квантовые поправки или петлевые схемы конечны и поддаются вычислениям. Это первая квантовая теория гравитации в истории физики, дающая конечные квантовые поправки. (Как мы помним, все предшествующие теории, в том числе изначальная теория Эйнштейна, концепция Калуцы-Клейна и теория супергравитации, не удовлетворяли этому основному критерию.)

Для того чтобы осуществлять сложные перемещения, струна должна подчиняться целому ряду условий самосогласованности. Условия самосогласованности настолько жестки, что налагают чрезвычайно строгие ограничения на пространство-время. Другими словами, струна не в состоянии самосогласованно перемещаться в любом произвольном пространстве-времени, подобно точечной частице.

Когда ограничения, которые струна налагает на пространство-время, были впервые определены, потрясенные физики увидели, как из уравнений струнной теории возникли уравнения Эйнштейна. Это было поразительно: физики обнаружили, как без каких-либо допущений, связанных с уравнениями Эйнштейна, эти же самые уравнения, как по волшебству, появляются из теории струн. Оказалось, что и уравнения Эйнштейна нельзя считать фундаментальными, если их можно вывести из теории струн.

Если теория струн верна, значит, она дает ответ на давнюю загадку о природе «дерева» и «мрамора». Эйнштейн полагал, что когда-нибудь один только «мрамор» объяснит все свойства «дерева». Для Эйнштейна «дерево» оставалось всего лишь изъяном или вибрацией пространства-времени — не больше и не меньше. Однако специалисты в области квантовой физики придерживались прямо противоположного мнения. Они считали, что «мрамор» можно превратить в «дерево», т. е. метрический тензор Эйнштейна можно преобразовать в гравитон, дискретную порцию энергии, переносящей силу гравитации. Эти точки зрения диаметрально противоположны, долгое время компромисс между ними считался недостижимым. А оказалось, что струнная теория и есть то самое «недостающее звено» между «деревом» и «мрамором».

вернуться

73

Джон Хорган «Суперструнный искуситель» (John Horgan, The Pied Piper of Superstrings, Scientific American, November 1991), c. 42, 44.

вернуться

74

Процитировано в: Коул «Теория всего», с. 25.

вернуться

75

Дэвид Гросс, интервью. См.: «Суперструны», под ред. Дэвиса и Брауна, с. 150.

43
Перейти на страницу:
Мир литературы