Выбери любимый жанр

Гиперпространство - Сапцина Ульяна Валерьевна - Страница 36


Изменить размер шрифта:

36

Если заменить наперстки кварками, тогда уравнения физики частиц должны оставаться неизменными при перестановке кварков. Если мы перетасовали три цветных кварка, а уравнения остались прежними, мы говорим, что этим уравнениям присуща симметрия SU (3). Число 3 отражает тот факт, что в нашем распоряжении три цвета, a SU обозначает конкретное математическое свойство симметрии[60]. Мы говорим, что в мультиплет входят три кварка. Кварки в мультиплетной структуре можно перетасовывать, не меняя физического смысла теории.

Подобно этому, слабое взаимодействие определяет свойства двух частиц — электрона и нейтрино. Симметрия, которая подразумевает перестановку этих частиц, но уравнение при этом не меняется, называется SU (2). Это означает, что мультиплет слабого взаимодействия содержит электрон и нейтрино, которые можно поворачивать один относительно другого. И наконец, силе электромагнитного взаимодействия присуща симметрия U (1), предусматривающая вращение компонентов поля Максвелла в самом поле.

Все эти виды симметрии просты и элегантны. Однако самый спорный аспект Стандартной модели заключается в том, что оно «объединяет» три фундаментальных взаимодействия, просто сращивая все три теории и получая одну большую симметрию, SU (3) x SU (2) x U (1), т. е. произведение симметрий отдельных сил. (Этот процесс можно сравнить со сборкой пазла. Если у нас есть три детали, которые не совсем точно прилегают друг к другу, мы всегда можем взять скотч и склеить их. Так и образуется Стандартная модель — путем склеивания трех отдельных мультиплетов вместе. Способ эстетически несовершенный, но по крайней мере благодаря скотчу три детали не распадаются.)

В идеале можно ожидать, что «теория всего» объединит все частицы в единственный мультиплет. Увы, в Стандартную модель входят три отдельных мультиплета, которые нельзя поворачивать относительно друг друга.

За пределами Стандартной модели

Сторонники Стандартной модели могут искренне утверждать, что она подходит для всех известных экспериментальных данных. Они могут справедливо отметить, что результатов опытов, которые противоречат Стандартной модели, не существует. Тем не менее даже самые ревностные защитники этой модели не верят, что она представляет собой окончательную теорию материи. Быть окончательной теорией она не может по ряду серьезных причин.

Во-первых, Стандартная модель не описывает гравитацию, поэтому неизбежно оказывается неполной. В результате попыток срастить теорию Эйнштейна со Стандартной моделью получались абсурдные ответы. К примеру, когда мы вычисляли вероятность отклонения электрона в поле тяготения, гибридная теория давала нам бесконечную вероятность, что не имеет смысла. Физики говорят, что квантовая гравитация неперенормируема, т. е. она не дает разумных, конечных чисел, описывающих простые физические процессы.

Во-вторых, и это, вероятно, важнее всего, Стандартная модель на редкость безобразна, поскольку она грубо соединяет три совершенно разных взаимодействия. Лично я считаю, что Стандартную модель можно сравнить со скрещиванием животных трех совершенно разных видов (например, мула, слона и кита). В сущности, модель настолько искусственна и уродлива, что ее немного стесняются даже создатели. Они первыми принесли извинения за недостатки модели и признали, что их теория никак не может считаться окончательной.

Ее безобразие становится очевидным, если составить списки характеристик кварков и лептонов. Для того чтобы получить представление о недостатках этой теории, перечислим различные частицы и силы, входящие в Стандартную модель:

1. 36 кварков шести «ароматов» и трех «цветов», а также их аналоги из антиматерии, характеризующие сильное взаимодействие.

2. Восемь полей Янга-Миллса для описания глюонов, которые связывают друг с другом кварки.

3. Четыре поля Янга-Миллса, характеризующие слабое и электромагнитное взаимодействие.

4. Шесть типов лептонов для описания слабого взаимодействия (в том числе электрон, мюон, тау-лептон и соответствующие им аналоги нейтрино).

5. Загадочная «частица Хиггса», необходимая для образования масс и констант, описывающих частицы.

6. По меньшей мере 19 произвольных постоянных, которые описывают массы частиц и силы различных взаимодействий. Эти 19 констант приходится вводить вручную, во всяком случае в теории они не заданы.

Хуже того, этот длинный список частиц можно разделить на три семейства кварков и лептонов, практически неотличимых друг от друга. По сути дела, эти три семейства частиц — точные копии, дающие тройной избыток количества якобы элементарных частиц (рис. 5.4). (Тревогу внушает мысль о том, что известных нам в настоящее время элементарных частиц гораздо больше, чем было открыто субатомных частиц в 1940-е гг. Невольно задаешься вопросом, насколько элементарны эти элементарные частицы в действительности.)

Гиперпространство - i_025.png

Рис. 5.4. Согласно Стандартной модели, первое поколение частиц состоит из верхнего и нижнего кварков (трех цветов, с ассоциирующимися с ними античастицами), электрона и нейтрино. Досадная особенность Стандартной модели заключается в том, что поколений таких частиц известно три, причем каждое поколение представляет собой почти точную копию предыдущего. С трудом верится, что природа способна на такую избыточность, как создание на фундаментальном уровне трех идентичных копий частиц.

Безобразие Стандартной модели можно противопоставить простоте уравнений Эйнштейна, в которых все выведено из первоначал. Для того чтобы понять эстетический контраст между Стандартной моделью и общей теорией относительности Эйнштейна, следует знать: когда физики говорят о «красоте» своих теорий, в действительности они подразумевают, что этим теориям присущи по меньшей мере два основных свойства:

1. Объединяющая симметрия.

2. Способность объяснять огромные объемы экспериментальных данных с помощью максимально экономичных математических выражений.

Стандартная модель не удовлетворяет ни одному из этих условий. Ее симметрия, как мы уже убедились, на самом деле образована путем сращения трех симметрий Меньших масштабов, по одной для каждой из трех сил. Кроме того, по форме эта теория громоздкая и нескладная. Ее никак нельзя назвать экономичной. К примеру, уравнения Эйнштейна, записанные в развернутой форме, в длину занимают всего лишь дюйм (2,5 см) и не достигают даже величины одной строки в этой книге. Одной строки этих уравнений достаточно, чтобы выйти за пределы ньютоновских законов и вывести искривление пространства, Большой взрыв и другие астрономически значимые явления. А для того чтобы записать в развернутом виде Стандартную модель, потребуется две трети этой страницы, вдобавок написанное будет выглядеть как мешанина замысловатых символов.

Ученые склонны считать, что природа предпочитает экономичность и всегда стремится избежать ненужной избыточности в физических, биологических и химических структурах. Что бы ни создавала природа — гигантских панд, молекулу протеина или черные дыры, — она действует бережливо. Или, как однажды отметил нобелевский лауреат Чжэньнин Янг, «по-видимому, природа пользуется преимуществами простых математических представлении законов симметрии. Если задуматься об элегантности и совершенстве относящихся к ним математических рассуждений и сопоставить их со сложными и масштабными физическими последствиями, невозможно не проникнуться чувством глубокого уважения к силе законов симметрии»[61]. А теперь мы обнаружили вопиющее нарушение этих законов на самом фундаментальном уровне. Существование трех идентичных семейств, каждого со своим нетипичным набором частиц, — одна из особенностей Стандартной модели, которая вызывает наибольшее беспокойство и создает непростую проблему для физиков: неужели от Стандартной модели — теории, которая имела самый громкий успех в истории науки, — следует отказаться только потому, что ей недостает элегантности?

вернуться

60

SU (special unitary) относится к специальным унитарным матрицам, т. е. тем унитарным матрицам, у которых определитель равен единице. — Прим. авт.

вернуться

61

Процитировано в: Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 177.

36
Перейти на страницу:
Мир литературы