Выбери любимый жанр

10 гениев науки - Фомин Александр Владимирович - Страница 11


Изменить размер шрифта:

11

Рассматривая фигуры, которые образовывали выложенные на песке псефы, Пифагор обнаружил несколько типов фигурных чисел.

Квадратные числа – сумма ряда нечетных чисел, начиная с единицы: 1 + 3 + 5+… + (2n – 1) = n2.

10 гениев науки - _08.png

Прямоугольные числа – сумма четных чисел, начиная с 2: 2 + 4 + 6 +… + 2n = n(n – 1).

Треугольные числа:

10 гениев науки - _09.png

Телесные (объемные) числа:

10 гениев науки - _10.png

Простые (линейные) числа – те, которые можно было выложить только в виде линии.

10 гениев науки - _11.png

На примере квадратных и прямоугольных чисел можно видеть, что с их помощью вполне могли быть открыты закономерности суммирования арифметических рядов.

Такой способ вычисления вполне мог стать толчком для открытия некоторых математических закономерностей. Возможно, именно так, еще в допифагорейский период, было установлено, что площадь прямоугольника равна произведению его сторон. С помощью псефов можно легко вывести и продемонстрировать справедливость многих арифметических правил, например ab =

10 гениев науки - _12.png

и вывести распределительный закон умножения:

+ b)с = ас + bc
10 гениев науки - _13.png

Именно к способу вычисления с помощью псефов восходит происхождение математических понятий «квадрат» – как вторая, и «куб» – как третья степень.

К сожалению, теория фигурных чисел не вошла в «Начала» Евклида, хотя в определениях к 7-й книге «Начал» есть описания «плоскостных», «телесных», «квадратных» и «кубических» чисел. Более подробно теория фигурных чисел описана у Никомаха – философа II века нашей эры, но этот источник не содержит доказательств. Тем не менее, было бы странно предположить, что, исследуя свойства четных и нечетных чисел, Пифагор доказывал вполне очевидные вещи и при этом оставил недоказанными гораздо более сложные положения теории фигурных чисел. Так же как для теоремы Пифагора, ученые реконструируют возможные способы доказательств этих положений.

Считается, что с помощью теории фигурных чисел Пифагор вывел метод нахождения неограниченного количества так называемых «пифагоровых троек» – целочисленных длин сторон прямоугольного треугольника. Числа, составляющие пифагоровы тройки, должны укладываться в равенство а2 + b2 = с2. Как видим, эта формула соответствует теореме Пифагора. Пифагор открыл, что числа эти должны иметь следующий вид:

10 гениев науки - _14.png

При этом n – нечетное число. Для четного n закономерность, по всей видимости, была выведена уже позднее.

Есть сведения о том, что, изучая делимость чисел, Пифагор открыл дружественные и совершенные числа. Дружественные числа – пары чисел, каждое из которых равно сумме делителей другого. Например: 220 и 284. Совершенные числа равны сумме собственных делителей: 6 (1 + 2 + 3 = 6), 28 (1 + 2 + 4 + 7 + 14 = 28). Об открытии Пифагором дружественных чисел пишет Ямвлих. А описание способа нахождения совершенных чисел есть и у Никомаха, и в «Началах» Евклида. В последнем источнике описание этого способа и доказательство его справедливости расположены в непосредственной близости от описания свойств четных и нечетных чисел (36-я глава 9-й книги). Таким образом, можно предположить, что они тоже восходят к Пифагору.

Как мы уже писали выше, ему приписывают и построение «космических тел» – правильных многогранников – тетраэдра, куба, додекаэдра, октаэдра и икосаэдра. То, что Пифагор не мог открыть все пять правильных многоугольников, достоверно известно. Два последних открыл Теэтет – ученый IV века до нашей эры. Некоторые источники утверждают, что додекаэдр построил Гиппас – математик-пифагореец V века до нашей эры. Таким образом, Пифагору может принадлежать только честь построения двух первых многогранников – тетраэдра и куба.

Также есть сведения о том, что Пифагор открыл и доказал иррациональность

10 гениев науки - _15.png
. Но эта информация вызывает серьезные сомнения. Многие источники свидетельствуют о том, что иррациональные величины открыл Гиппас.

Роль Пифагора в становлении и развитии математики, естественно, заключается не только в тех открытиях, которые он сам совершил. Гиппас и другие математики – члены пифагорейских общин – продолжили дело своего учителя. Пользуясь дедуктивным методом, разработанным Фалесом и Пифагором, они заложили прочный фундамент теоретической математики. К сожалению, сведений о том, какие именно открытия принадлежат тому или иному ученому, практически нет. Только о Гиппасе известно, что он открыл способ построения додекаэдра, вписанного в шар, открыл иррациональные величины, работал над теорией пропорций и продолжил изыскания Пифагора в области математической теории музыки.

В целом же о масштабах достижений пифагорейских математиков можно судить только косвенно по развитию математики за тот период времени, когда ею занимались практически только пифагорейцы. Считается, что представителями школы Пифагора к середине V века до нашей эры были найдены все математические положения, изложенные в 2-й и 4-й книгах «Начал» Евклида. 2-я книга содержит основы геометрической алгебры, а 4-я посвящена правильным многоугольникам. К ним же восходит основная масса материала, изложенного в 1-й и 3-й книгах. 1-я книга содержит 23 определения геометрических понятий. Вот несколько примеров этих определений: точка – то, что не имеет частей; линия – длина без ширины; прямая – линия, одинаково расположенная относительно всех своих точек; параллельные прямые – прямые, которые лежат в одной плоскости и не встречаются, сколь угодно продолженные. Дальше содержатся аксиомы и постулаты, рассматриваются свойства основных фигур планиметрии: треугольника, прямоугольника, параллелограмма[16], приводится теорема о сумме углов треугольника и теорема Пифагора. 3-я книга описывает свойства круга, его касательных и хорд. К этому же времени был в том или ином виде создан тот кусок 9-й книги «Начал», о котором мы писали выше, и часть 13-й книги, описывающая построения тетраэдра, куба и додекаэдра. Также есть основания предполагать, что пифагорейцам принадлежит авторство 7-й книги «Начал», представляющей собой введение в арифметику.

Кроме математики пифагорейцы занимались и астрономическими исследованиями. К сожалению, установить авторство тех или иных астрономических открытий и теорий того времени еще сложнее, чем математических. Поэтому мы ограничимся только перечислением тех достижений астрономии, которые предположительно восходят к Пифагору и его ближайшим последователям. Так, Пифагору приписывается авторство идеи о шарообразности Земли. Возможно, именно он установил, что Фосфор и Геспер, звезды, которые наблюдали утром и вечером, на самом деле являются Венерой, а также осуществил разделение Земли на зоны: арктическую, летнюю, экваториальную, зимнюю и антарктическую. В такой зональности отражено более раннее разделение на пояса небесной сферы. Так, Арктика получила свое название от созвездия Большой Медведицы.[17] Разделение на пояса небесной сферы тоже приписывается Пифагору. Считается, что он ввел и само слово «космос».

Пифагор и его ученики проводили астрономические наблюдения. Им приписывается отделение планет от звезд и обнаружение попятного движения планет[18]. Пифагорейцы, скорее всего, открыли все пять планет, видимые невооруженным глазом: Меркурий, Венеру, Марс, Юпитер и Сатурн. Они же установили и порядок расположения планет: Луна, Солнце, Венера, Меркурий, Марс, Юпитер, Сатурн (Луна и Солнце ставились в один ряд с планетами). Этот порядок был выведен из скорости движения небесных тел и их яркости. При этом ошибка в определении относительного положения Венеры и Меркурия связана именно с выводами, сделанными из яркости этих небесных тел. Пифагорейцы знали о том, что Луна светит отраженным светом. Скорее всего, они также пришли к выводу о круговом движении планет и высказали идею геоцентризма.

11
Перейти на страницу:
Мир литературы