Человеческий мозг. От аксона до нейрона. - Азимов Айзек - Страница 31
- Предыдущая
- 31/83
- Следующая
Существует семь видов рыб (некоторые из них костистые, некоторые относятся к отряду хрящевых, являясь родственниками акул), специализированных именно в этом направлении. Самый живописный представитель — это рыба, которую в народе называют «электрическим угрем», а в науке весьма символическим именем — Electrophorus electricus.Электрический угорь — обитатель пресных вод, и встречается в северной части Южной Америки — в Ориноко, Амазонке и ее притоках. Строго говоря, эта рыба не родственница угрям, ее назвали так за длинный хвост, который составляет четыре пятых тела этого животного, длина которого составляет от 6 до 9 футов. Все обычные органы этой рыбы умещаются в передней части туловища длиной около 15 — 16 дюймов.
Более половины длинного хвоста занято последовательностью блоков модифицированных мышц, которые образуют «электрический орган». Каждая из этих мышц производит потенциал, который не превышает потенциал обычной мышцы. Но тысячи и тысячи элементов этой «батареи» соединены таким образом, что их потенциалы складываются. Отдохнувший электрический угорь способен накопить потенциал порядка 600 — 700 вольт и разряжать его со скоростью 300 раз в секунду. При утомлении этот показатель снижается до 50 раз в секунду, но такой темп угорь может выдержать в течение длительного времени. Электрический удар достаточно силен для того, чтобы убить мелкое животное, которыми питается эта рыба, или чтобы нанести чувствительное поражение животному более крупному, которое по ошибке вдруг решит съесть электрического угря.
Электрический орган — это великолепное оружие. Возможно, к такому электрошоку с удовольствием прибегли бы и другие животные, но эта батарея занимает слишком много места. Представьте себе, как мало животных имели бы крепкие клыки и когти, если бы они занимали половину массы их тела.
Второй тип специализации, предусматривающий использование электрических явлений, протекающих па клеточной мембране, заключается не в усилении потенциала, а в увеличении скорости распространения волны деполяризации. Возникают клетки с удлиненными отростками, которые представляют собой почти исключительно мембранные образования. Главная функция этих клеток — очень быстрая передача стимула от одной части тела к другой. Именно из таких клеток состоят нервы — те самые нервы, с рассмотрения которых началась эта глава.
Нерпы, которые мы можем наблюдать невооруженным глазом, конечно же не являются отдельными клетками. Это пучки нервных волокон, иногда в этих пучках содержится очень много волокон, каждое из которых представляет собой часть нервной клетки. Все волокна пучка идут в одном направлении и, ради удобства и экономии места, связаны между собой, хотя отдельные волокна могут выполнять совершенно разные функции. Точно так же отдельные изолированные электрические провода, выполняющие совершенно разные задачи, для удобства объединяют в один электрический кабель. Само нервное волокно является частью нервной клетки, которую также называют нейроном. Это греческое производное латинского слова «нерв». Греки эпохи Гиппократа приложили это слово к нервам в истинном смысле и к сухожилиям. Теперь этот термин обозначает исключительно индивидуальную нервную клетку. Основная часть нейрона — тело практически мало чем отличается от всех остальных клеток организма. Тело содержит ядро и цитоплазму. Самым большим отличием нервной клетки от прочих клеток является наличие длинных выростов из тела клетки. От большей части поверхности тела нервной клетки отходят выросты, которые ветвятся на протяжении. Эти ветвящиеся выросты напоминают крону дерева и называются дендритами (от греческого слова «дерево»).
На поверхности тела клетки есть одно место, из которого выходит один, особенно длинный, отросток, который не ветвится на всем своем (иногда огромном) протяжении. Этот отросток называется аксоном. Почему он так называется, я объясню позже. Именно аксонами представлены типичные нервные волокна нервного пучка. И хотя аксон микроскопически тонок, его длина может составить несколько футов, что представляется необычным, если учесть, что аксон — это всего лишь часть единственной нервной клетки.
Возникшая в какой-либо части нервной клетки деполяризация с большой скоростью распространяется по волокну. Волна деполяризации, распространяющаяся по отросткам нервной клетки, называется нервным импульсом. Импульс может распространяться по волокну в любом направлении; так, если нанести стимул на середину волокна, то импульс будет распространяться в обе стороны. Однако в живых системах практически всегда получается так, что импульсы распространяются по дендритам только в одну сторону — к телу клетки. По аксону же импульс всегда распространяется от тела клетки.
Скорость распространения импульса по нервному волокну была впервые измерена в 1852 году немецким ученым Германом Гельмгольцем. Для этого он наносил стимулы на нервное волокно па разных расстояниях от мышцы и регистрировал время, через которое мышца сокращалась. Если расстояние увеличивалось, то удлинялась и задержка, после которой наступало сокращение. Задержка соответствовала времени, которое требовалось импульсу, чтобы пройти дополнительное расстояние.
Довольно интересен тот факт, что за шесть лет до опыта Гельмгольца знаменитый немецкий физиолог Иоганнес Мюллер в припадке консерватизма, столь характерного для ученых на склоне их карьеры, категорически заявлял, что никто и никогда не сможет измерить скорость проведения импульса по нерву.
В разных волокнах скорость проведения импульса не одинакова. Во-первых, скорость, с которой импульс движется по аксону, грубо зависит от его толщины.
Чем толще аксон, тем больше скорость распространения импульса. В очень тонких волокнах импульс движется по ним довольно медленно, со скоростью двух метров в секунду и даже меньше. Не быстрее, чем, скажем, распространяется волна деполяризации по мышечным волокнам. Очевидно, чем быстрее должен реагировать организм на тот или иной стимул, тем желательнее высокая скорость проведения импульсов. Один из способов достижения такого состояния — это увеличение толщины нервных волокон. В теле человека самые тонкие волокна имеют диаметр 0,5 микрона (микрон — это одна тысячная часть миллиметра), а самые толстые — 20 микрон, то есть в 40 раз больше. Площадь поперечного сечения толстых волокон в 1600 раз больше площади поперечного сечения тонких волокон.
Можно подумать, что поскольку млекопитающие обладают лучше развитой нервной системой, чем другие группы животных, то нервные импульсы распространяются у них с наибольшей скоростью, а нервные волокна толще, чем у всех остальных биологических видов. Но в действительности это не так. У низших животных, тараканов, нервные волокна толще, чем у людей.
Самыми толстыми нервными волокнами обладают самые развитые из моллюсков — кальмары. Крупные кальмары вообще, вероятно, являются самыми развитыми и высокоорганизованными животными из всех беспозвоночных. Учитывая их физические размеры, мы не удивляемся тому, что им требуется высокая скорость проведения импульсов и очень толстые аксоны. Нервные волокна, идущие к мышцам кальмара, называются гигантскими аксонами и достигают в диаметре 1 миллиметра. Это в 50 раз больше диаметра самого толстого аксона млекопитающих, а по площади поперечного сечения аксоны кальмара превосходят аксоны млекопитающих в 2500 раз. Гигантские аксоны кальмара — это дар божий для нейрофизиологов, которые могут легко ставить на них опыты (например, измерять потенциалы на мембранах аксонов), что очень трудно делать на чрезвычайно тонких аксонах позвоночных.
Тем не менее, почему все-таки беспозвоночные превзошли позвоночных толщиной нервных волокон, хотя позвоночные обладают более развитой нервной системой?
Ответ заключается в том, что скорость проведения импульсов по нервам у позвоночных зависит не только от толщины аксонов. Позвоночные животные получили в свое распоряжение более изощренный способ повышения скорости проведения импульсов по аксонам.
- Предыдущая
- 31/83
- Следующая