Выбери любимый жанр

Путешествие к далеким мирам - Гильзин Карл Александрович - Страница 14


Изменить размер шрифта:

14

Одним из наиболее совершенных жидкостных ракетных двигателей того времени был двигатель ОРМ-65 тягой 175 килограммов, созданный в 1936 году для установки на новых видах летательных аппаратов — «воздушной торпеде» и ракетоплане.

«Воздушная торпеда» представляла собой первую из ракет такого рода — беспилотную крылатую ракету с автоматическим управлением. Дальность полета торпеды должна была составлять по проекту 50 километров. Торпеда успешно прошла летные испытания в 1939 году (29 января и 8 марта). Ракетоплан представлял собой экспериментальный самолет-моноплан небольшого размера, предназначенный для установки на нем жидкостного ракетного двигателя, — это был первый не только у нас в стране, но и во всем мире летательный аппарат подобного типа. Он был создан путем переоборудования двухместного планера, успешно летавшего начиная с 1935 года. Во время наземных испытаний двигателя на ракетоплане он проработал (в марте 1938 года) непрерывно 230 секунд, что было большим достижением для того времени.

Путешествие к далеким мирам - _50.png
Взлет отечественной ракеты с жидкостным ракетным двигателем (1933 г.).

Крупнейшим успехом в развитии жидкостных ракетных двигателей был ознаменован 1940 год: в этом году совершен первый полет человека на самолете с жидкостным ракетным двигателем. 28 февраля 1940 года с одного из подмосковных аэродромов взлетел самолет, на буксире у которого находился упомянутый выше ракетоплан (с другим ракетным двигателем). В воздухе летчик В. П. Федоров, пилотировавший ракетоплан, перевел его на самостоятельный полет и включил двигатель. Так был совершен этот исторический полет человека на самолете с жидкостным ракетным двигателем. Началась новая страница в развитии реактивной техники.

Через два с небольшим года, 15 мая 1942 года, капитан Г. Я. Бахчиванджи совершил первый полет уже на специально спроектированном самолете с жидкостным ракетным двигателем. Первый раз в истории такой самолет поднял человека в воздух.

Жидкостные ракетные двигатели применяются сейчас в авиации для различных целей.

В ряде случаев они используются для облегчения взлета тяжелых самолетов. Иногда эти двигатели устанавливаются на самолетах в дополнение к основному двигателю другого типа, например турбореактивному, с целью увеличения скорости полета в нужный момент — при наборе высоты, в воздушном бою и т. д. Такая установка применялась в нашем Военно-Воздушном Флоте еще в годы минувшей войны; в частности, жидкостный ракетный двигатель РД-1 был установлен в хвосте известного пикирующего бомбардировщика «ПЕ-2» конструкции В. М. Петлякова.

Устанавливаются жидкостные ракетные двигатели на самолетах и в качестве основного и единственного двигателя. Самолеты с этими двигателями предназначаются обычно для исследовательских целей — изучения особенностей полета на очень больших, сверхзвуковых скоростях. С их помощью удается достигать наибольших, доступных пока, скоростей полета. Имеются и военные самолеты с такими двигателями — так называемые истребители обороны, или истребители-перехватчики, задачей которых является борьба с бомбардировщиками врага.

Однако самолеты с жидкостным ракетным двигателем обладают и одним очень серьезным недостатком по сравнению с другими самолетами — они могут находиться в полете гораздо меньшее время. Это объясняется тем, что жидкостные ракетные двигатели обладают исключительной «прожорливостью» — они расходуют в 15–20 раз больше топлива, чем турбореактивные двигатели такой же тяги. Это не удивительно. Ведь турбореактивные двигатели современных самолетов, хотя бы нашего хорошо всем известного авиалайнера ТУ-104, помимо топлива, находящегося в баках самолета, используют для своей работы атмосферный воздух, точнее — кислород из этого воздуха. Таким образом, вся окружающая нас атмосфера служит для этого двигателя как бы вторым огромным «топливным» баком. Иначе обстоит дело в случае жидкостного ракетного двигателя. Как уже было отмечено в начале этой главы, на самолете с таким двигателем, помимо бака с горючим, должен иметься и бак с окислителем — допустим, тем же кислородом, но только жидким. Понятно, что общий расход топлива, то есть горючего вместе с окислителем, получается значительно большим, чем расход топлива в турбореактивном двигателе. Вот почему при непрерывной работе жидкостного ракетного двигателя на полной мощности запаса топлива на истребителе-перехватчике хватает лишь на 3–5 минут! Чередуя разгон самолета при работающем двигателе с последующим планированием, когда двигатель выключен, летчик такого самолета может довести общую продолжительность полета до 20–30 минут. Этого только-только хватает для того, чтобы взлететь, навязать бой противнику в районе своего аэродрома и сесть с пустыми баками. Поэтому жидкостные ракетные двигатели применяются пока только на единственном типе самолетов — истребителях-перехватчиках, да и то вдобавок к другому двигателю.

Главное использование жидкостных ракетных двигателей связано, однако, в настоящее время не с авиацией, а с различного рода ракетами. Это и тяжелые снаряды противовоздушной обороны, и ракетные авиабомбы, и снаряды дальнего действия, и высотные ракеты.

Применение тяжелых ракет с жидкостным ракетным двигателем с каждым днем все расширяется, и некоторые из таких ракет начинают уже сильно походить на небольшие межпланетные корабли, как их обычно рисуют в книжках…

Вот одна из таких ракет, применявшаяся в минувшую войну в качестве тяжелого дальнобойного реактивного снаряда. Боевая головка этого снаряда заключала в себе ? тонны взрывчатого вещества, и снаряд пролетал расстояние около 300 километров. Конечно, ни одна самая тяжелая и дальнобойная пушка такими тяжелыми снарядами и так далеко не стреляла. На этом снаряде был установлен мощный жидкостный ракетный двигатель.

Ракета имела длину около 14 метров, диаметр — 1,7 метра, а сзади, по хвостовому оперению, — даже 3,6 метра. Поневоле поражаешься размерам этой ракеты, когда сравниваешь ее с фигурами стоящих рядом людей. Ну, и вес ракеты тоже внушительный — примерно 13 тонн, так что вес «полезной нагрузки» — взрывчатки — составляет только небольшую часть, несколько процентов от общего веса ракеты.

Двигатель установлен в «корме» ракеты, как это будет, очевидно, и на межпланетном корабле. Работает он на топливе, состоящем из двух жидкостей. Вот почему на этой ракете, в ее средней части, установлены два гигантских бака.

В переднем баке находится горючее, которым в данном случае служит этиловый, то есть винный, спирт (крепкий, не менее 75°). Задний бак служит для хранения окислителя — чистого жидкого кислорода, как это и предлагал в свое время Циолковский. Запас топлива на ракете равен примерно 9 тоннам. Вот что составляет большую часть, примерно ?, общего веса ракеты. Из этих 9 тонн около 4 тонн — спирт, остальное — жидкий кислород.

Для выстрела, то есть запуска, ракета устанавливается в вертикальном положении, в котором она поддерживается с помощью специального легкого станка-люльки. Почти как межпланетный корабль, приготовившийся к прыжку в мировое пространство! В таком положении заполняются топливом гигантские баки ракеты — ракета заправляется. Для этой цели служат мощные автозаправщики, но какими игрушечными они кажутся рядом с устремленной ввысь ракетой!

Путешествие к далеким мирам - _52.png
Исследовательский сверхзвуковой самолет с жидкостным ракетным двигателем.

Но вот заправка кончена, ракету можно запускать. Открываются топливные краны, спирт и кислород поступают в камеру сгорания двигателя. Там происходит воспламенение топлива, и образовавшиеся в результате сгорания раскаленные газы с большой скоростью начинают вытекать из двигателя через сопло в атмосферу.

Путешествие к далеким мирам - _54.png
14
Перейти на страницу:
Мир литературы