Выбери любимый жанр

Астрономия для "чайников" - Маран Стивен П. - Страница 56


Изменить размер шрифта:

56

То, что звезды главной последовательности находятся посредине H-R-диаграммы, — вполне естественно, потому что все остальные звезды ярче или холоднее их (и, соответственно, находятся выше или ниже на диаграмме).

Двойные и кратные звезды

Около половины всех звезд двойные, причем эти двойные звезды — одного возраста, т. е. "рождены вместе". Звезды, которые рождаются вместе и которых во время образования из первичного облака объединяет взаимная гравитация, обычно так и остаются вместе. А то, что объединяет гравитация, мало что в космосе может разорвать. У "взрослой" звезды из двойной системы никогда не было другого партнера.

Астрономия для "чайников" - i_003.jpg
 Физическая двойная звезда (binary star) состоит из двух звезд, вращающихся вокруг общего центра масс. Центр масс двух звезд, имеющих одинаковую массу, находится точно посредине между ними. Но если масса одной звезды в два раза больше массы другой, то центр масс находится ближе к звезде большей массы. Более того, он расположен в два раза дальше от звезды меньшей массы, чем от звезды большей массы. Если же одна звезда в три раза больше другой, то центр масс находится в три раза ближе к ней, чем к ее партнеру и т. д. Пару звезд можно сравнить с детьми на качелях (представьте себе доску, качающуюся на опоре). Чтобы уравновесить качели, более тяжелый ребенок должен сесть ближе к центру.

Если у звезд из двойной системы одинаковые массы, то их орбиты одинакового размера, а если массы разные, то и орбиты разные. Общее правило таково: большая звезда имеет меньшую орбиту. Вы можете решить, что двойная система звезд аналогична нашей Солнечной системе, в которой чем ближе планета к Солнцу, тем быстрее она движется и тем меньше времени ей требуется на то, чтобы совершить полный оборот вокруг Солнца. Идея, конечно, хороша, но увы, неправильная.

В двойных системах большая звезда, которая имеет меньшую орбиту, движется медленнее, чем меньшая звезда по большей орбите. Причем их относительные скорости зависят от соотношения масс. Звезда, масса которой в три раза меньше массы "партнера", движется в три раза быстрее. Таким образом, измеряя скорости движения звезд двойной системы по орбитам, астрономы могут определить их относительные массы.

Кратные звезды

Оптическая двойная звезда (double star) — это две звезды, который с точки зрения наблюдателя на Земле кажутся очень близкими одна к другой. Некоторые из них действительно являются физическими двойными звездами, вращающимися вокруг общего центра масс. Но некоторые просто кажутся расположенными рядом наблюдателю с Земли, но на самом деле находятся на большом расстоянии одна от другой. У таких звезд нет ничего общего; они даже "не знакомы".

Оптическая тройная звезда (triple star) — это три звезды, которые кажутся расположенными рядом и, как и в предыдущем случае, могут действительно быть членами тройной звездной системы (triple star system) или находиться очень далеко одна от другой. А тройная звезда, аналогично двойной, состоит из трех звезд, которых удерживает вместе взаимная гравитация и которые вращаются вокруг общего центра масс.

Здесь кстати может быть сравнение со счастливой супружеской жизнью. "Третий — лишний" — вот самое распространенное объяснение нестабильности романтических отношений, в которые вмешивается третий человек. То же самое верно и по отношению к тройной звезде: на самом деле она состоит из прочной пары (или двойной звезды) и третьей звезды, которая движется по гораздо большей орбите. Если бы все три звезды находились рядом, то их гравитационное взаимодействие носило бы хаотичный характер и группа очень быстро распалась бы так, что по меньшей мере одна звезда улетела бы, чтобы никогда не вернуться. Поэтому тройная звезда — это, в сущности, двойная система, один член которой на самом деле представляет собой очень прочную звездную пару.

Четверная звезда (quadruple stars) часто представляет собой систему "два на два", т. е. состоит из двух прочных двойных звездных систем, каждая из которых вращается вокруг общего для четырех звезд центра масс.

Кратная звезда (multiple star) — это собирательное название для всех звездных систем, в которых больше двух членов, т. е. для тройных, четверных звезд и т. д. И на каком-то этапе становится уже трудно различить звездную систему большой кратности от малого звездного скопления. Получается, что в сущности, это одно и то же.\\

Эффект Допплера, или Как важно быть двойной звездой

Зависимость орбитальных скоростей членов двойной звездной системы от их масс — вот что вызывает большой интерес к ним со стороны астрономов. У нас есть множество теорий о массах различных типов звезд, но мало способов их проверить. Что поделаешь, так мало способов взвесить звезду! Но, к счастью, астрономы так легко не сдаются. Они научились определять массу звезд, изучая двойные системы и используя простое физическое свойство наблюдаемого источника света.

Астрономия для "чайников" - i_006.jpg
 Если масса одной звезды в три раза больше массы другой, то она движется по своей орбите в двойной системе со скоростью, в три раза меньшей скорости звезды-партнера. Поэтому, чтобы узнать относительные массы звезд (т. е. во сколько раз одна тяжелее другой), достаточно измерить их скорости. Только в очень редких случаях удается непосредственно следить за движением звезд, поскольку большинство двойных звезд настолько удалены, что мы не можем наблюдать за их перемещением по орбите. Но даже на большом расстоянии можно изучить спектр света, излучаемого двойной звездой. В этом спектре могут быть линии обеих звезд двойной системы.

А теперь давайте поговорим об эффекте Допплера, названного в честь физика XIX века Кристиана Допплера.

Частота, или длина волны, звука или света, регистрируемого наблюдателем, меняется в зависимости от скорости излучающего (или издающего) его источника по отношению к наблюдателю. Если говорить о звуке, то в качестве примера издающего его источника можно привести гудок паровоза. А источником, излучающим свет, может быть звезда. (О звуках более высокой частоты говорят, что они высокие; например, сопрано — это более высокий голос, чем тенор. У световых волн более высокой частоты длина волны меньше, и они смещены в фиолетовую область спектра, в то время как у световых волн более низкой частоты длина волны больше, и они смещены в красную область спектра.)

Астрономия для "чайников" - i_006.jpg
 Коротко о спектроскопии звезд

Спектроскопия звезд — это анализ линий в спектре звезд. Это, без преувеличения, самый лучший инструмент астрономов для изучения физической природы звезд. С помощью спектроскопии можно определить следующее:

Астрономия для "чайников" - i_012.jpg
 радиальные скорости звезд (движения по направлению к Земле или от нее);

Астрономия для "чайников" - i_012.jpg
 относительные массы, орбитальные периоды и длины орбит звезд из двойных систем;

Астрономия для "чайников" - i_012.jpg
 силу тяжести на поверхности звезд;

Астрономия для "чайников" - i_012.jpg
 направления и напряженность магнитных полей звезд;

Астрономия для "чайников" - i_012.jpg
 химический состав звезд (атомы каких элементов присутствуют и в каких состояниях они находятся);

Астрономия для "чайников" - i_012.jpg
 циклы активности (т. е. пятнообразовательной деятельности) звезд (по аналогии с циклом солнечной активности).

Всю эту информацию получают, измеряя положение, ширину и интенсивность цвета (насколько он темный или светлый) маленьких темных (а иногда светлых) линий в спектре звезд. Ученые анализируют спектры звезд с помощью эффекта Допплера, чтобы узнать, насколько быстро движутся звезды, насколько протяженны их орбиты и каковы их относительные массы. Существуют и другие эффекты — Зеемана (Zeeman)[34] и Штарка (Stark)[35], которые влияют на внешний вид спектральных линий. Используя эти знания, с помощью эффекта Зеемана можно определить напряженность магнитного поля звезды, а с помощью эффекта Штарка — плотность атмосферы звезды и силу тяжести на ее поверхности. Само присутствие конкретных спектральных линий, каждая из которых соответствует атому определенного элемента, поглощающему (темные линии) или излучающему (светлые линии) свет в атмосфере звезды, говорит нам о присутствии некоторых химических элементов и температуре звезды.

Спектральные линии говорят даже о том, в каком состоянии находятся атомы, ионизированы ли они. Звезды настолько горячи, что атомы железа, например, могут лишиться одного или нескольких своих электронов. Тогда они превращаются в ионы железа. Для каждого типа ионов железа, в зависимости от того, скольких электронов он лишился, характерны особые узоры спектральных линий и положение в спектре. Сравнивая спектры звезд, полученные с помощью телескопов, со спектрами химических элементов, и ионов, полученными в результате лабораторных экспериментов или вычисленными на компьютерах, астрономы могут изучать характеристики звезд, находящихся на огромных расстояниях от Земли.

В холодных звездных газах многим атомам железа недостает только одного электрона, поэтому они создают спектр однократно ионизированного железа. Но в самых горячих зонах звезд, таких как солнечная корона, температура которой достигает миллионов градусов, атомы железа могут терять 10 электронов. Это значит, что железо находится в высоко ионизированном состоянии; оно создает соответствующий рисунок спектральных линий, который ясно говорит о том, что в этой зоне звезды очень высокая температура.

Некоторые участки солнечного спектра меняются в зависимости от изменения районов возмущений на Солнце, причем пик этих возмущений наблюдается каждые 11 лет. Аналогичные изменения происходят в спектре других солнцеподобных звезд. Поэтому с помощью спектроскопии астрономы могут даже определить продолжительность цикла активности далекой звезды, причем настолько далекой, что нечего и мечтать хоть краешком глаза увидеть пятна на ее поверхности.

56
Перейти на страницу:
Мир литературы