Выбери любимый жанр

Что нас ждет, когда закончится нефть, изменится климат и разразятся другие катастрофы XXI века. - Кунстлер Джеймс Говард - Страница 28


Изменить размер шрифта:

28

Гидрат метана

Считается, что значительные запасы метана, по меньшей мере в два раза превосходящие объемы всего известного природного топлива на Земле, скопились в виде газового гидрата в отложениях на дне мирового океана. Это некая форма «льда», состоящего из молекул метана, существующего только при низких температурах и очень высоком давлении, который имеется на глубине около 300 метров. Гидрат метана представляет собой возможный альтернативный источник энергии, но с некоторыми оговорками. Во-первых, его очень трудно, а точнее дорого, добыть, то есть требуется затратить больше энергии, чем в дальнейшем удастся получить из него. На сегодняшний день для промышленных целей гидрат метана еще не был извлечен.

Гидрат метана к тому же опасен. Неудачные работы по добыче на такой глубине приводили к взрывам и разрушению буровых платформ и кораблей. Физические свойства гидрата метана таковы, что при его добыче происходит невероятная дестабилизация вещества, вследствие чего вода и метан разъединяются. После чего высвобожденный крайне огнеопасный газ поднимается на поверхность. Промышленность заинтересована в бурении в гидратных зонах, которые могут нарушить устойчивость поддерживающих платформы опор. Повреждение океанического дна также может стать причиной многих бед на поверхности — от создания смертельной угрозы рабочей команде корабля до нанесения вреда окружающей среде. Ядовитый газ не только опасен для человека. Метан, высвободившийся в атмосферу, создает в десять раз больший тепличный эффект, чем углекислый газ. Таким образом, пытаясь добыть гидрат метана, мы выбрасываем в атмосферу опасный метан, причем его объем много больше, чем количество добытого газа.

Нулевая энергия

Это некий загадочный теоретический процесс, описанный учеными, занимающимися квантовой физикой. Его назвали «квантовым даром, за который придется, в конце концов, заплатить». Теория о нулевой энергии предполагает использование энергетического потенциала «темной материи» Вселенной. Трудная для понимания физика, занимающаяся нулевой энергией, утверждает, что космические силы, отвечающие за гравитацию, имеют доступ к неограниченным запасам дешевой, безвредной энергии Земли. Хочу отметить лишь два момента по поводу теории нулевой энергии: 1) понятие полезного максимума в инженерии гласит, что если что-то звучит слишком хорошо, чтобы быть правдой, то на самом деле это неправда. В данном случае мы наблюдаем классический пример фантастических изобретений, как, например, двигатели внутреннего сгорания, которые могут работать на воде, и особые карбюраторы, благодаря которым обычный автомобиль сможет проехать 300 километров на 4 литрах топлива. Сегодня нулевая энергия, кажется, попадает в эту категорию. Но кто знает? Ведь то же самое можно было сказать об атомной энергии в 1893 году; 2) если и существуют какие-то вещества с нулевой энергией, то вряд ли они найдут применение до того, как мир окажется в большой беде вследствие истощения углеводородных ресурсов. Но, как и другие альтернативные источники, такая инновация, как нулевая энергия, может исчезнуть без надежной поддержки природного топлива.

Атомная энергия

Все так называемые альтернативные источники энергии, описанные выше, так или иначе не смогут долго обходиться без нефтяной поддержки. Последняя возможная замена нефти — это атомная энергия. Около 20 % электричества в США вырабатывают АЭС. Во Франции такие станции дают почти 70 % энергии (оставшуюся часть, в большей степени, вырабатывают гидроэлектростанции). Несмотря на то что использование атомной энергии превратилось в нечто естественное, со временем она выльется в очень большую проблему как в экономическом, так и политическом плане.

Для поддержания привычного образа жизни нам придется в XXI веке какое-то время использовать атомную энергию как основной способ получения электроэнергии.

В конце концов, мы будем вынуждены изменить наше отношение к землепользованию и транспорту. Нам придется радикально поменять жизнь, от многого отказаться. Политика также перейдет на новый уровень отношений, форм и ценностей. Но если мы хотим, чтобы цивилизация продолжила существовать как прежде, потребуется электричество, а получить его в середине XXI века можно будет только с использованием атомных реакторов.

Я не убежден, что без природного топлива мы сможем длительное время строить и обслуживать атомные реакторы. Но энергия ядерного распада настолько мощнее чем энергия солнца, ветра, биомассы и прочего «альтернативного» топлива, что капиталовложения оставшихся запасов природного горючего в атомную энергетику смогут дать больше, чем размышления о том, покроет ли это расходы или нет. И возможно, человечество получит больше времени, чтобы выйти из создавшегося положения. Может быть, через 30 лет для обслуживания реакторов нам придется прибегнуть к углю или синтетической нефти. Но основное уравнение атомной энергетики очень простое: при расщеплении одного атома урана получается в 10 миллионов раз больше энергии, чем при горении одного атома угля. Уран даст в 2 миллиона раз больше энергии на единицу массы, чем нефть.

Для выработки электроэнергии урана хватит примерно на сотню лет. Встречающийся в природе уран состоит из двух изотопов: на 99,3 % из урана U-238 и на 0,7 % из урана U-235. Последний более подвержен ядерному делению. Сегодня большинство атомных заводов используют обогащенный уран, в котором концентрация урана U-235 увеличена с 0,7 % до 4–5 %. Уран относительно дешевый — он стоит приблизительно $30 за килограмм. Количество урана, необходимое для обеспечения электроэнергией в течение всей жизни семьи из четырех человек, уместится в банке из-под пива.

В мире примерно 400 запатентованных ядерных реакторов-электрогенераторов. Реакторы выделяют тепло в процессе контролируемого расщепления атомного ядра. Тепло используется для создания пара, который выбрасывается в электротурбины. При этом не образуется никаких газов, способных навредить экологии, — ни углекислого газа, ни озона, ни какого-либо еще. Но огромное количество загрязняющих атмосферу газов выделяется в процессе сооружения и обслуживания реактора. Сами отходы реактора содержат сотни радиоактивных токсинов.

Топливные стержни у большинства реакторов содержат гранулы обогащенного урана. Критическая масса расщепляющегося вещества регулируется увеличением или сокращением этих стержней внутри активной зоны реактора. Примерно каждые два года топливные стержни в реакторе истощаются и требуют замены. Процесс замены стрежней может занять месяцы, хотя прогрессивные методы сократили срок в некоторых случаях до нескольких недель. Использованные топливные стержни все еще радиоактивны и накалены. Самая большая проблема в работе атомной электростанции — это утилизация использованного топлива. И это больше политическая проблема, чем материальная. Никто не хочет иметь по соседству хранилища опасных для жизни и здоровья отходов.

Использованные топливные стержни можно перерабатывать. При этом достаточное количество расщепляющего материала, получаемого от одной загрузки сырья, обеспечивает еще один год работы реактора. Хотя в итоге отходы все равно необходимо утилизировать. В течение десятилетий они скапливаются по всему миру. Средний реактор производит примерно 1,5 тонны отходов в год. С тех пор как в 1957 году первая промышленная атомная электростанция начала вырабатывать электричество, общий объем использованного топлива составил 9000 тонн.

Надо сказать, что требуется 500 лет, чтобы отработанное ядерное топливо стало не более опасным, чем встречающаяся в природе урановая руда.

На самом деле здесь можно говорить лишь об относительной безопасности. Не стоит забывать, что угольная промышленность унесла больше жизней, чем ядерная промышленность за прошедшие 50 лет. За последние 40 лет в США, Западной Европе, Японии и Южной Корее на атомных электростанциях не произошло ни одного чрезвычайного происшествия, унесшего человеческие жизни. Несчастье на Чернобыльской атомной электростанции 26 апреля 1986 года в бывшем Советском Союзе — другое дело. Тридцать один человек погиб из-за взрыва и последовавшего за ним пожара. Многие тысячи, кто имел отношение к устранению последствий аварии, умерли от рака.

28
Перейти на страницу:
Мир литературы