Математика в занимательных рассказах - Перельман Яков Исидорович - Страница 21
- Предыдущая
- 21/24
- Следующая
Принимая
х =0, 1, 2, 3, 4, 5, 6, 7, 8…,
получаем, что
у = 20 = 3х = 20, 17, 14, 11, 8, 5, 2 (-1, -4…).
Имеют смысл, очевидно, только первые семь значений. Им соответствуют
z = 0,2,4, 6,8, 10, 12.
Четыре рубля можно, как видим, уплатить 7-ю различными способами, например: 6 полтинниками, 2 двугривенными и 12 пятаками.
4) Семь рублей. Зх + у = 40.
Здесь не приходится рассматривать значения для ? от 0 до 9, так как при этом для у получаются числа от 40 до 13, и (х + у) составляет, по меньшей мере, 22, что нарушает требование. Остается рассмотреть поэтому лишь случаи:
х= 10, И, 12, 13,
причем
у = 40-3х= 10, 7, 4, 1,
z = 0,2, 4, 6.
Остальные случаи исключаются, так как ближайшее у уже отрицательное.
Этим вопрос исчерпывается полностью. Кто хотя бы немного имел дело с уравнениями, тот заметил, вероятно, что здесь не приходится оперировать так механически, как обычно. Это оттого, что мы имеем в нашем случае больше неизвестных, нежели уравнений, а именно — 3 неизвестных при 2 уравнениях. Неизвестное z мы устранили и получили одно уравнение с двумя неизвестными хи у. Поэтому задача становится неопределенной; можно лишь установить взаимную обусловленность чисел ? и у, так что для любого ? можно найти соответствующее значение у. В сущности, имеется бесконечное множество пар решений задач такого рода. Но число их ограничивается требованием, вытекающим из сущности задачи, а именно: либо чтобы искомые числа были целые (как в нашей задаче, где речь идет о монетах), либо чтобы они не были отрицательные (наш случай), либо чтобы их сумма не превышала определенного числа (у нас — 20-ти), и т. п.
Итак, возвращаясь к первоначальной задаче, скажем: счетчик мог безопасно посулить сколь угодно большую награду — задача неразрешима. Для вас тем самым открывается легкая возможность предлагать своим друзьям крепкие головоломки. Можете обещать им величайшую награду — не попадетесь: как истые математики, вы можете быть твердо уверены в себе. А кто пожелал бы узнать подробнее об уравнениях вроде рассмотренных выше, пусть спросит своего учителя математики о Диофанте Александрийском.
Примечание редактора Диофант Александрийский
Упомянутый в конце очерка александрийский математик Диофант жил в III веке нашей эры. Им написана была «Арифметика», от которой до нас дошла только первая половина сочинения. В этом труде рассматриваются, между прочим, неопределенные уравнения, которые Диофантом и были впервые введены в математику; поэтому имя его осталось навсегда связанным с этими уравнениями.
О жизни Диофанта известно лишь то, что сообщается в надписи, сохранившейся на его могильном памятнике, — надписи, которая составлена в форме следующей задачи:
Составив уравнение:
узнаем из его решения (х = 84), что Диофант умер 84 лет, женился 21 года, стал отцом на 38 году и потерял сына на 80 году.
Числовые анекдоты
Барри Пэн[38]
1
— Еще веревочку? — спросила мать, вытаскивая руки из лоханки с бельем. — Можно подумать, что я вся веревочная. Только и слышишь: веревочку да веревочку. Ведь я вчера дала тебе порядочный клубок. На что тебе такая уйма? Куда ты ее девал?
— Куда девал бечевку? — отвечал мальчуган. — Во-первых, половину ты сама же взяла обратно…
— А чем же прикажешь мне обвязывать пакеты с бельем?
— Половину того, что осталось, взял у меня Том, чтобы удить в канаве колюшек, хотя там и нет никаких колюшек.
— Старшему брату ты всегда должен уступать.
— Я и уступил. Осталось совсем немного, да из того еще папа взял половину для починки подтяжек, которые лопнули у него от смеха, когда случилась беда с автомобилем. А после понадобилось еще сестре взять две пятых оставшегося, чтобы завязать свои волосы узлом…
— Что же ты сделал с остальной бечевкой?
— С остальной? Остальной-то было всего-навсего 30 сантиметров. Вот и устраивай телефон из такого обрывка!
Какую же длину имела бечевка первоначально?
2
Снимая наколенники, спортсмен спросил веселого малого, считавшего очки:
— Сколько у меня, Билл?
— А вот сколько: часы только что пробили по одному разу на каждую пару ваших очков, — затараторил веселый малый. — А если бы у вас было вдвое более того, что у вас есть, то имелось бы у вас втрое против того, что пробьют часы при следующем бое.
Спрашивается: который был час в начале этого разговора?
3
В воскресенье был устроен в школе детский праздник под открытым небом. Пора было звать ребят к чаю. У палатки, где предполагалось устроить чаепитие, стоял пирожник и заведующий школой. Пирожник был полный мужчина, потому что, по роду своей профессии, питался главным образом остатками пирожных. Заведующий был высок и тонок.
— Да, — сказал пирожник, — будь у нас еще пяток стульев, я мог бы накормить всю компанию в три очереди, по равному числу ребят в каждой. Надо будет поискать, нельзя ли промыслить здесь пять стульев или табуретов.
— Не беспокойтесь, — ответил заведующий, — я распределю их на четыре очереди, в каждой поровну.
— О, тогда на каждую партию придется еще по три лишних стула.
Сколько было детей и сколько стульев?
4
— Зайдите ко мне завтра днем на чашку чая, — сказал старый доктор своему молодому знакомому.
— Благодарю вас. Я выйду в три часа. Может быть, и вы надумаете прогуляться, так выходите в то же время. Встретимся на полпути.
— Вы забываете, что я старик, шагаю в час всего только 3 километра, а вы, молодой человек, проходите, при самом медленном шаге, 4 километра в час. Не грешно бы дать мне немного вперед.
— Справедливо. Так как я прохожу больше вас на 1 километр в час, то, чтобы уравнять нас, я и дам вам этот километр, т. е. выйду на четверть часа раньше. Достаточно?
— Даже очень мило с вашей стороны, — поспешил согласиться старик.
Молодой человек так и сделал: вышел из дому в три четверти третьего и шел со скоростью 4 километра в час. А доктор вышел ровно в три и делал по
38
Современный английский беллетрист. Английские меры подлинника заменены метрическими, вследствие чего пришлось несколько видоизменить и самые задачи. — Ред.
- Предыдущая
- 21/24
- Следующая