Выбери любимый жанр

Математика в занимательных рассказах - Перельман Яков Исидорович - Страница 17


Изменить размер шрифта:

17

Сторонники рассматриваемой теории идут еще далее: они утверждают, что масса пирамиды составляет ровно одну тысячебиллионную долю массы земного шара. Это соотношение, по их мнению, не может быть случайным и свидетельствует о том, что древнеегипетские жрецы знали не только геометрические размеры нашей планеты, но и задолго до Ньютона и Кавендиша исчислили ее массу, «взвесили» земной шар.

Однако здесь та же нелогичность, что и в примере с расстоянием от Земли до Солнца. Совершенно нелепо говорить о том, будто масса пирамиды «выбрана» в определенном соответствии с массою земного шара. Масса пирамиды определилась с того момента, как назначены были размеры ее основания и высоты. Нельзя одновременно сообразовать высоту пирамиды с основанием, составляющим определенную долю земного радиуса, — и независимо от этого ставить ее массу в связь с массою Земли. Одно определяется другим. Значит, должны быть отвергнуты всякие домыслы

о знании египтянами массы земного шара. Это — не более как числовая эквилибристика.

Искусно оперируя с числами, опираясь на случайные совпадения, можно доказать, пожалуй, все что угодно. Один французский астроном, ради шутки, доказывал, что строители большой пирамиды были знакомы с числом е — основанием натуральных логарифмов. Он ссылался на следующее соотношение в размерах пирамиды: длина полудиагонали основания, выраженная в 10-миллионных долях четверти земного меридиана (т. е. в метрах), состоит из тех же цифр, идущих, кроме того, в том же порядке, что и квадратный корень из числа е… Чем это доказательство хуже тех, которые приводятся приверженцами «математической теории пирамиды»?

Мы видим, на каких шатких основаниях покоится легенда о непостижимой учености строителей большой пирамиды. А попутно мы имеем тут и маленькую наглядную демонстрацию пользы того отдела арифметики, который занимается приближенными числами.

Примечание Я.И. Перельмана Действия над приближенными числами

Читателю, незнакомому с правилами действий над приближенными числами, вероятно, интересно будет хотя бы вкратце с ними ознакомиться, тем более что знание этих простых приемов, несомненно, окажется и практически полезным, сберегая много труда и времени при вычислениях.

Прежде всего — несколько слов о самом понятии приближенного числа. В технике приходится производить действия большей частью над такими числами, которые получены при измерении. Числа эти никогда не выражают результата измерения совершенно точно. Измерив, например, толщину трубки и получив в результате 2,5 см, можно утверждать, что число целых сантиметров указано здесь вполне верно. Но нельзя все же поручиться за то, что толщина трубки заключает ровно 2,5 сантиметра, а не больше или меньше на несколько сотых долей сантиметра. Если бы истинная величина его была, например, 2,53 см или 2,48 см, — мы и тогда сочли бы его равным 2,5 см, потому что разница в 0,03 см или 0,02 см ускользает от нашего внимания при подобных измерениях. Поэтому результат измерения диаметра стержня — 2,5 см — число не точное, а приближенное.

Как бы тщательно ни производилось измерение, как бы совершенны ни были инструменты, — в результате не может получиться вполне точное число. В технике результаты измерения заключают обычно только 3, редко 4 верных цифры, а зачастую даже и всего 2 верных цифры.

Покажем теперь, как следует производить действия над такими приближенными числами.

Сложение и вычитание. Пусть требуется к длине 422 метра прибавить 6,75 м. Если сложить эти числа как точные, получится 428,75. Но оба числа — приближенные. «422 метра» не означает ровно 422 метра, а 422 метра и еще несколько неизвестных десятых, сотых и т. д. долей метра, которыми при измерении пренебрегли. Значит, мы можем изобразить приближенное число 422 так

422,???

где знаки??? означают неизвестные цифры десятых, сотых и т. д. долей. Точно так же и приближенное число 6,75 можно изобразить так

6,75?.

Если мы сложим эти числа в таком изображении, т. е. напишем

Математика в занимательных рассказах - i_013.png

то результат получится такой:

428,???.

(Надо иметь в виду, что? + 5 =? т. е. неизвестная цифра + 5 есть, конечно, неизвестная цифра. Точно так же? + 7 =?. Но так как эта цифра заведомо больше 7, то, отбрасывая ее, мы должны предыдущую цифру увеличить.)

Итак, в результате сложения мы получили 429 целых и неизвестное число десятых, сотых и т. д. долей. Это значит, что сумма приближенных чисел 422 и 6,75 есть приближенное число 429.

Вообще правило сложения приближенных чисел таково: надо сохранять в результате всего столько цифр после запятой, сколько их имеется в данном числе с наименьшим числом цифр после запятой. В нашем случае у одного слагаемого совсем нет цифр после запятой; поэтому и в результате надо откинуть все цифры после запятой. То же правило относится и к вычитанию. Приведем несколько примеров применения этого правила.

Математика в занимательных рассказах - i_014.png

Умножение и деление. Пусть нам нужно найти площадь прямоугольника, стороны которого 22,4 метра и 4,3 метра. Перемножая эти числа как точные, мы получили бы 96,32 кв. метра. Но мы знаем, что оба числа приближенные и что после 4-х десятых долей в первом числе и после 3-х десятых во втором имеются еще неизвестные цифры. Написав эти числа в виде 22,4? и 4,3? и перемножая их, получаем:

Математика в занимательных рассказах - i_015.png

Мы видим, что верных цифр в этом произведении всего две и что результат умножения есть не 96,32, а приближенное число 96.

Общее правило умножения приближенных чисел таково: в результате сохраняют всего столько цифр, сколько их имеется в том из данных чисел, у которого число цифр меньше.

То же правило относится и к действию деления. (При подсчете числа цифр не принимаются во внимание нули, стоящие впереди и в конце числа, т. е. 0,018 считается за двузначное, 3240 — за трехзначное.)

Приведем примеры:

76,3 ? 1,6= 120,

2,31 ? 2 = 4,6,

3,445 ? 2,3 = 7,9,

82: 3,25 = 25.

Степени и корни. При возвышении во вторую и третью степень, а также и при извлечении корня второй и третьей степени в результате сохраняют столько же цифр, сколько их в данном числе (т. е. в возвышаемом числе или в подкоренном).

Математика в занимательных рассказах - i_016.png

К этим правилам прибавим еще два правила:

1) Когда результат какого-нибудь действия не окончательный (т. е. когда с ним предстоит еще производить другие действия), то сохраняют одной цифрой больше, чем требуют предыдущие правила.

2) Когда приходится перемножать два числа, состоящие не из одинакового числа цифр, то более длинное число можно округлить, оставив только одну лишнюю цифру. То же правило относится и к действию деления. Например, взамен умножения

3,44 ? 5 умножают 3,4 ? 5; взамен деления 3,3: 76,65 делят 3,3:76,6.

История одной игры

Вильгельм Аренс[35]

Математика в занимательных рассказах - i_017.jpg

I

Около полувека назад — в конце 70-х годов — вынырнула в Соединенных Штатах одна игра, «игра в 15»; она быстро распространилась по всему цивилизованному миру и, благодаря несчетному числу усердных игроков, которых она заполонила, превратилась в настоящее общественное бедствие, в истинный бич человечества. Заглавный рисунок, заимствуемый из одного американского сочинения, изображает эту игру: коробку с 15 шашками, перенумерованными от 1 до 15, и одним свободным полем. Перед ящиком мы видим жертву игорной страсти, одного из многочисленных одержимых этой манией; в разгар полевых работ он, поддавшись внезапно приступу игорной лихорадки, кинулся на колени перед демоном, которому поклонялся. Растерянность видна во всей его фигуре, во всех его чертах; лицо искажено отчаянием; правая рука нервно сжата в кулак; левая рука и наморщенный лоб охвачены судорогой. Кожа головы, после ряда усилий, скинула шляпу; волосы дико растрепаны. Забыт труд, покинуты лошадь и плуг; на нем уселась пара птиц; даже заяц, обычно столь пугливый, сознает, что этот потерянный для мира маньяк, всецело погруженный в 15 шашек своей коробки, не представляет для него ни малейшей опасности.

вернуться

35

Доктор Вильгельм Аренс широко известен своими исследованиями в области математических игр. Главный его труд «Математические развлечения и игры», в двух больших томах, разрабатывает эту область с исчерпывающей полнотой и строгой научностью. Ему принадлежат также следующие сочинения: «Математические развлечения» (более краткое и общепонятное, чем упомянутое выше; есть русский перевод), «Старое и новое из области занимательной математики», «Забава и дело в математике», «Анекдоты о математиках». — Предлагаемый здесь очерк опубликован в 1924 г. в одном математическом сборнике и появляется на русском языке впервые. — Ред.

17
Перейти на страницу:
Мир литературы