Выбери любимый жанр

Математика для любознательных - Перельман Яков Исидорович - Страница 3


Изменить размер шрифта:

3

Я слушал эти необоснованные доводы за и против, хорошо зная, что нахожусь на пузыре, который секунд шесть тому назад сынишка мой выдул соломинкой у садового окна моего дома. Видя, что в результате столкновений этих вдвойне ложных мнений должно погибнуть благородное мыслящее существо (так как кипячение до размягчения является для мылоземельцев смертельным), я не мог больше сдерживать себя, поднялся и потребовал слова.

– Не делай глупостей, – шептал, придвигаясь ко мне, дядя Вендель. – Ты себя погубишь. Ничего не поймут, увидишь! Молчи!

Я не поддался и начал:

– Граждане «мыслящие»! Позвольте высказаться гражданину, располагающему достоверными сведениями о происхождении и устройстве вашего мира.

Поднялся всеобщий ропот. «Что! Как! «Вашего» мира? У вас разве другой? Слушайте! Слушайте!.. Дикарь, варвар!.. Он знает, как возник мир!».

– Как возник мир, не знает никто, ни вы, ни я, – продолжал я, повысив голос. – Потому что все «мыслящие», как и мы оба – лишь ничтожная частица мыслящих существ, рассеянных по различным мирам. Но как возник тот эфемерный клочок мира, на котором мы сейчас находимся, – это я могу вам сказать. Мир ваш действительно полый и наполнен воздухом; кора его не толще, чем указано гражданином Глагли. Она, без сомнения, когда-нибудь лопнет, – но до того времени пройдут еще миллионы ваших лет (громкое «браво» глаглианцев). Верно и то, что существует еще много обитаемых миров, но не все они представляют собою полые шары; нет, это во много миллионов раз более крупные каменные массы, обитаемые такими существами, как я. Жир и щелочь не только не единственные элементы, но и вообще не элементы: это вещества сложные, которые лишь случайно являются преобладающими в вашем крошечном мыльнопузырном шаре…

– Мыльнопузырный мир! – Буря возмущения поднялась со всех сторон.

– Да, – храбро кричал я, не обращая внимания на жесты дяди Венделя. – Да, мир ваш – не более как мыльный пузырь, который выдули на конце соломинки уста моего маленького сына и который в ближайший же момент пальцы ребенка могут раздавить. По сравнению с этим миром ребенок мой, конечно, исполин…

– Неслыханно!.. Безумие!.. – доносилось до меня со всех сторон, и чернильницы пролетали близ моей головы. – Это сумасшедший! Мир – мыльный пузырь! Сын его выдул мир! Он объявляет себя отцом творца мира. Закидать его камнями! Кипятить, кипятить!..

– Во имя справедливости! – кричал я. – Выслушайте. Заблуждаются обе стороны. Не мир сотворен моим сыном; он выдул лишь этот шар в пределах мира, выдул по законам, которые господствуют над всеми нами. Он ничего не знает о вас, и вы ничего не можете знать о нашем мире. Я – человек. Я в сто миллионов раз больше вас и в десять биллионов раз старше. Освободите Глагли. Не спорьте по вопросам, которых вы не в состоянии разрешить…

– Долой Глагли!.. Долой «людей»! Посмотрим, сможешь ли ты раздавить мир между своими пальцами! Зови же своего сынишку! – раздавалось вокруг, когда меня и Глагли волокли к котлу с кипящим глицерином.

Пышущий жар обдавал меня. Напрасно пытался я защищаться.

– Внутрь его! – кричала толпа. – Посмотрим, кто лопнет раньше…

Горячий пар окружил меня, жгучая боль пронизала все тело и…

Я сидел рядом с дядей Венделем за садовым столом. Мыльный пузырь еще парил на прежнем месте.

– Что это было? – спросил я, изумленный и пораженный.

– Одна стотысячная доля секунды. На земле ничего не изменилось. Я успел вовремя передвинуть шкалу прибора – иначе ты сварился бы в глицерине. Ну что, опубликовать открытие микрогена? Так тебе и поверят! Попробуй-ка, объясни им…

Дядя рассмеялся, и мыльный пузырь лопнул.

Сын мой выдул новый.

Примечания редактора
Относительность пространства и времени

Рассказ «На мыльном пузыре» подводит непосредственно к вопросу об относительности пространства. Фантастический «микроген» обладает способностью уменьшать людей в произвольное число раз. Однако, если бы уменьшились не только оба героя рассказа, их платье и содержимое их карманов, но также и весь мир, вся вселенная[5], то они не ощутили бы ровно никакой перемены. Путешествие по мыльному пузырю не могло бы состояться по той простой причине, что самый пузырь уменьшился бы во столько же раз и был бы для наших героев так же мал, как и прежде. Вообще все предметы, по сравнению с которыми уменьшенные люди могли бы удостовериться в совершившемся изменении своего роста, также уменьшились бы в соответствующее число раз, и для людей исчезла бы всякая возможность обнаружить уменьшение своих размеров. Каждый желающий может поэтому смело объявить своим согражданам, что он сейчас уменьшил (или увеличил) их вместе со всем миром в миллион раз – и никто не сможет его опровергнуть, никто не сможет доказать ему, что этого не было сделано. Зато и сам он, правда, ничем не сможет удостоверить своего утверждения.

Принято думать, что невозможно обнаружить изменения размеров мира только при том условии, если все три его измерения подверглись соразмерному изменению, т. е. если мир изменил свою величину без искажения; всякое искажение мира – полагают обычно – не может ускользнуть от наших наблюдений. Однако это не так. Если бы, например, мир наш внезапно заменился другим миром, представляющим зеркальное отражение прежнего, – мы, проснувшись в таком мире, ничем не могли бы обнаружить произошедшей перемены. Мы писали бы левой рукой, выводя строки справа налево, наклоняя буквы налево – и вовсе не сознавали бы, что совершаем нечто необычное. Ведь мы различаем 

Математика для любознательных - i_003.png
и 
Математика для любознательных - i_004.png
только потому, что связываем правильное начертание с определенным направлением, – запоминаем, например, что полукруг должен быть обращен в правую сторону[6]. Но в новом, «зеркальном» мире место правой руки заняла левая, и потому мы неизбежно будем теперь считать правильным начертание
Математика для любознательных - i_005.png
. Короче говоря: отличить мир от симметричного с ним мира, если первый исчез и заменен вторым, – мы не в состоянии.

Более того: мы не заметили бы ни малейшей перемены в мире даже и в том случае, если бы все предметы увеличились (или уменьшились) в разных направлениях в неодинаковое число раз. Если мир изменяется таким образом, что все предметы увеличиваются, например, в восточном направлении, скажем, в 1000 раз, а в прочих направлениях остаются неизменными, то и такое чудовищное искажение прошло бы для нас совершенно незамеченным. Действительно, как мог бы я убедиться, что стол, за которым я сижу, вытянулся в восточном направлении в 1000 раз? Казалось бы, весьма простым способом: если прежняя его длина в этом направлении была один метр, то теперь она равна 1000 метров. Достаточно, значит, только произвести измерение. Но не забудем, что когда я поверну метровый стержень в восточном направлении, чтобы выполнить это измерение, стержень мой удлинится (как и все предметы мира) в 1000 раз, и длина стола в восточном направлении по-прежнему будет одинакова с длиною стержня; я буду считать ее, на основании проделанного измерения, равной 1 метру. Теперь понятно, почему мы никаким способом не в силах были бы обнаружить, что форма мира подверглась указанному искажению.

Германский математик проф. О. Дзиобек приводит в одной из своих статей еще более удивительные соображения.

«Представим себе зеркало с отражающей поверхностью произвольной кривизны – одно из тех уродующих зеркал, которые выставляются в балаганах для увеселения посетителей, забавляющихся своим карикатурным отражением. Обозначим реальный мир через А, а его искаженное изображение через В. Если некто стоит в мире А у рисовальной доски и чертит на ней линейкой и циркулем линии и фигуры, то уродливый двойник его в В занимается тем же делом. Но доска наблюдателя в А, на наш взгляд, – плоская, доска же в В – изогнутая. Наблюдатель в А проводит прямую линию, а отраженный наблюдатель в В – кривую (т. е. представляющуюся нам кривой). Когда в А чертится полный круг, то в В выполняется то же самое, но замкнутая линия мира В кажется нам не окружностью, а некоторой сложной кривой, быть может, даже двоякой кривизны. Когда наблюдатель в мире А берет в руки прямой масштаб с нанесенными на нем равными делениями, то в руках его двойника оказывается тот же масштаб, но для нас он не прямой, а изогнутый и при том с неравными делениями.

3
Перейти на страницу:
Мир литературы