Выбери любимый жанр

Характер Физических Законов - Голышев Виктор Петрович - Страница 15


Изменить размер шрифта:

15

Сохранение энергии - несколько более сложный вопрос: хотя и здесь у нас есть число, которое не меняется со временем, число это не соответствует никакому определенному предмету. Чтобы прояснить суть дела, я приведу вам следующее простенькое сравнение.

Вообразите, что мать оставляет в комнате ребенка с 28 кубиками, которые нельзя сломать. Ребенок играет с кубиками целый день, и мать, вернувшись, обнаруживает, что кубиков по-прежнему 28 - она следит за сохранением кубиков! Так продолжается день за днем, но однажды, вернувшись, она находит всего 27 кубиков. Оказывается, один кубик валяется за окном - ребенок его выкинул. Рассматривая законы сохранения, прежде всего нужно убедиться в том, что ваши предметы не вылетают за окно. Такая же неувязка получится, если в гости к ребенку придет другой мальчик со своими кубиками. Ясно, что все это нужно учитывать, рассуждая о законах сохранения.

В один прекрасный день мать, пересчитывая, обнаруживает всего 25 кубиков и подозревает, что остальные 3 ребенок спрятал в коробку для игрушек. Тогда она говорит: "Я открою коробку". "Нет, - отвечает он, - не смей открывать мою коробку". Но мама очень сообразительна и рассуждает так: "Я знаю, что пустая коробка весит 50 г, а каждый кубик весит 100 г, поэтому мне надо просто-напросто взвесить коробку". Затем, подсчитав число кубиков, она получит

Число видимых кубиков + (Масса коробки-50 г) /100 г

- опять 28. Какое-то время все идет гладко, но потом сумма опять не сходится. Тут она замечает, что в раковине изменился уровень грязной воды. Она знает, что если кубиков в воде нет, то глубина ее равна 15 см, а если положить туда один кубик, то уровень повысится на 0,5 см. Поэтому она добавляет еще одно слагаемое:

Число видимых кубиков + (Масса коробки-50 г) /100 г  + (Уровень воды - 15 см) / 0,5 см

и снова получается 28. Ребенок становится все более изобретательным, а мать не уступает ему, добавляя все новые и новые слагаемые, которые соответствуют кубикам, но с математической точки зрения представляют собой абстрактные числа, потому что самих кубиков не видно.

Теперь я попытаюсь объяснить, в чем сходство между сохранением кубиков и сохранением энергии и в чем различие. Для начала предположим, что ни при каких условиях вы не можете видеть кубики. Слагаемое "число видимых кубиков" всегда отсутствует. Тогда мать будет складывать множество слагаемых, таких, как "кубики в коробке", "кубики в воде" и т. д. Кубиков энергии, насколько нам известно, вообще нет. Кроме того, в отличие от кубиков количество энергии не обязательно выражается целым числом. Бедная мамаша может получить в одном слагаемом 6 1/8 кубика, в другом - 7/8, в третьем - 21 кубик, что по-прежнему составляет в сумме 28. Так обстоит дело с энергией.

Мы установили, что для закона сохранения энергии у нас есть схема с целым набором правил. Согласно каждому из этих правил, мы можем вычислить значение для каждого из видов энергии. Если мы сложим все значения, соответствующие разным видам энергии, то сумма их всегда будет одинаковой. Но, насколько мы знаем, не существует никаких реальных частиц (кубиков или шариков) энергии. Это абстрактное, чисто математическое правило: существует число, которое не меняется, когда бы вы его ни подсчитали. Более вразумительного объяснения я дать вам не в силах.

Энергия существует во всевозможных формах, подобно кубикам в коробке, кубикам в раковине и т. д. Есть энергия, связанная с движением (кинетическая энергия); энергия, связанная с гравитационным взаимодействием (она называется потенциальной энергией тяготения); тепловая, электрическая и световая энергия; энергия упругости в пружинах; химическая энергия; ядерная энергия и, наконец, энергия, которой обладает частица в силу одного своего существования, - эта энергия прямо зависит от массы. Обнаружил ее, как вы знаете, Эйнштейн. Я имею в виду его знаменитое соотношение E = mc2.

Итак, существует много видов энергии, и мы кое-что знаем об их взаимосвязи, - в этом вопросе мы не совсем невежественны. Например, то, что мы называем тепловой энергией, в значительной степени лишь кинетическая энергия движения частиц в теле. Упругая энергия и химическая энергия имеют одинаковое происхождение - силы взаимодействия между атомами. Когда атомы перестраиваются в другом порядке, меняется энергия, а если меняется эта величина, то должна измениться и какая-то другая. Например, если вы что-то сжигаете, меняется химическая энергия и вы обнаруживаете теплоту там, где ее раньше не было, ибо сумма энергий должна остаться прежней. Упругая энергия и химическая, обе связаны с взаимодействием атомов, и теперь нам известно, что эти взаимодействия являются комбинацией двух вещей - электрической энергии и опять-таки кинетической, только на этот раз формулу дает нам квантовая механика. Световая энергия - не что иное, как электромагнитная энергия, потому что свет теперь представляют себе как электрическую и магнитную волну. Ядерная энергия не выражается через другие виды энергии; сегодня я могу сказать только, что она - результат ядерных сил.

Закон сохранения энергии очень полезен в методическом отношении. Я приведу несколько простых примеров, чтобы показать вам, как, зная закон сохранения энергии и формулы для вычисления энергии, мы можем понять другие законы. Иными словами, многие другие законы не независимы, а являются как бы зашифрованными пересказами закона сохранения энергии. Простейший из них - правило рычага (рис. 19).

Характер Физических Законов - i_025.png

На шарнире - рычаг. Длина одного плеча 1 м, другого--4 м. Прежде всего вспомним закон для энергии тяготения: если у вас есть несколько грузов, то вы берете вес каждого груза, умножаете его на высоту над землей, складываете все вместе № получаете полную энергию тяготения. Пусть на длинном плече рычага груз массы 2 кг, на коротком - какой-то неизвестный груз массы X; Х - всегда неизвестная величина, поэтому давайте переименуем ее в W и сделаем вид, будто мы знаем о ней больше, чем на самом деле. Теперь вопрос в том, каким должен быть груз W для равновесия, чтобы рычаг тихо покачивался, но сильно не перекашивался? Если он тихо покачивается, то это означает, что энергия остается одинаковой и когда рычаг горизонтален, и когда он наклонен так, что груз в 2 кг поднялся, скажем, на 2 см. Раз эн ергия одинакова, рычагу безразлично, в каком он положении, и он не перекашивается. Если груз в 2 кг поднимается на 2 см, то насколько опускается груз W? Из рисунка ясно, что если АO = 1 м, а OB = 4 м, то при BBi = 2 см отрезок AAi будет равняться 0,5 см. Теперь применим закон для энергии тяготения. Вначале обе высоты BB и AAi  были равны нулю и общая энергия была равна нулю. Чтобы найти энергию повернувшегося рычага, мы умножаем вес груза массы 2 кг на высоту 2 см и складываем с неизвестным весом W, умноженным на высоту 0,5 см. Сумма должна дать прежнюю энергию - нуль. Поэтому

2 - W / 4 = 0, откуда W=8.

Это один из способов понять простой закон - хорошо известное вам правило рычага. Но интересно, что не только этот, но и сотни других законов можно тесно связать с различными видами энергии. Я привел вам этот пример только для того, чтобы показать, насколько полезен закон сохранения энергии.

Но вся беда в том, что на практике он не выполняется из-за трения в шарнире. Если что-то движется, например по горизонтальному полу катится шарик, то рано или поздно трение его остановит. А куда же денется кинетическая энергия шарика? Энергия движения шарика превратится в энергию колебания атомов пола и атомов шарика. Мир, если смотреть на него издали, кажется круглым, гладким, чисто отполированным шариком, но если посмотреть на него вблизи, он оказывается очень сложным: миллиарды крохотных атомов, всевозможные неровности. Он похож на крупную гальку у нас под ногами, ибо состоит из этих крохотных шариков. Таков и пол - бугристая дорога, насыпанная из шариков. Когда вы катите чудовищный голыш по этой гальке, вы видите, что галька - маленькие атомы - начинает подпрыгивать. После того как шар прокатился, атомы, которые остались позади, продолжают дрожать от тех толчков и ударов, которые они претерпели. Так в полу остается тепловая энергия, колебания атомов. На первый взгляд кажется, что закон сохранения несправедлив, ибо энергия прячется от нас и нам нужны термометры и другие приборы, чтобы ее обнаружить. Но как бы ни был сложен процесс, мы всегда находим, что энергия сохраняется, даже если не знаем других, более детальных законов.

15
Перейти на страницу:
Мир литературы