Выбери любимый жанр

Новая философская энциклопедия. Том первый. А - Д. - Коллектив авторов - Страница 153


Изменить размер шрифта:

153

248

БЕСКОНЕЧНОЕ обсуждались понятия, ставшие в дальнейшем главными и для Кантора: различение потенциальной и актуальной бесконечности, трансфинитного и абсолютного и ряд других. В 20 в. философские дискуссии вокруг проблем бесконечности соотносятся с теорией множеств и проблемой оснований математики. Таковы, напр., феноменологический подход к проблемам теории множеств у О. Бек- кера (Becker О. Mathematische Existenz. Halle, 1927); интерпретация проблем теории множеств как выражения классического конфликта между аристотелевским концептуализмом и платонистской традицией в математике у Л. Брюнсвика (Brunschvicq L. Les etapes de la philosophie mathematique. P., 1922); рассмотрение канторовской иерархии бесконечного на фоне концепции всеединства у Б. П. Вышеславцева (Вышеславцев Б. П. Этика преображенного эроса. М., 1994).

БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ ИЛОТИКЕ. Использование актуальной бесконечности в математике настойчиво стремятся легализовать со 2-й пол. 19 в. В этом процессе большую роль сыграли труды Б. Больцано, К. Вейерштрасса, Р. Дедекинда и в особенности Г. Кантора. В их работах было систематизировано употребление понятия бесконечности в европейской традиции, выделены его основные аспекты и была предложена (Кантором) беспрецедентно дерзкая конструкция «шкалы бесконечностей», ведущая от самых простых типов бесконечности до бесконечности в Боге. Несмотря на то что конструкции Кантора, ставшие основанием всей современной математики, привели к перманентному кризису этого основания, продолжавшемуся весь 20 в., теория множеств представляется зрелым плодом взаимодействия центральных философских тем европейской культурной традиции. Трагические коллизии мысли, связанные с историей т. н. парадоксов теории множеств, представляют собой своеобразное раскрытие и саморазоблачение тех титанических импульсов, которые сыграли существенную роль в становлении новоевропейской науки и цивилизации в 15-17 вв.

ТЕОРИЯ МНОЖЕСТВКАНТОРА. Кантор развил определенную технику оперирования с актуально бесконечными множествами и построил определенный аналог понятия количества для бесконечных множеств. Основой этой техники служит понятие взаимно-однозначного соответствия между элементами двух множеств. Говорят, что элементы двух множеств можно поставить во взаимно-однозначное соответствие, если каждому элементу первого множества можно поставить в соответствие элемент второго множества, разным — разные, и при этом каждый элемент второго множества будет соответствовать какому-то элементу первого. Про такие множества говорят, что они эквивалентны, что они имеют одинаковую мощность, или одинаковое кардинальное число. Если же можно доказать, что элементы множества А можно поставить во взаимнооднозначное соответствие с элементами подмножества В1 множества В, а элементы множества В нельзя поставить во взаимнооднозначное соответствие с элементами А, то тогда говорят, что мощность множества В больше мощности множества А. Эти определения применимы и к конечным множествам. В этом случае мощность представляет собой аналог конечных чисел. Но бесконечные множества имеют в этом смысле парадоксальные свойства. Бесконечное множество оказывается эквивалентным своей части, напр. так, как это происходит в т. н. «парадоксе Галилея»: 1,2,3,4, ...,п, ... i i i i I 2, 4,6,8, ...,2п,... Эти парадоксы были известны давно, и именно они, в частности, служили препятствием для рассмотрения актуально бесконечных множеств. То, что здесь просто сказывается специфика актуально бесконечного, объяснял в «Парадоксах бесконечного» Больцано. Дедекинд считал это свойство актуально бесконечных множеств характеристическим. Кантор развивает арифметику кардинальных чисел. Суммой двух кардинальных чисел является мощность объединения соответствующих им множеств, произведением — мощность т. н. множества-произведения двух данных множеств и т. д. Важнейшим оказывается переход от данного множества к множеству-степени, т. е., по определению, к множеству всех подмножеств исходного множества. Кантор доказывает основополагающую для его теории теорему: мощность множества-степени больше мощности исходного множества. Если мощность исходного множества записать через я, то в соответствии с арифметикой кардинальных чисел мощность множества-степени будет 2а , и мы имеем, следовательно, 2а > а. Значит, переходя от некоторого бесконечного множества, напр, от множества всех натуральных чисел, имеющего мощность К0 (обозначение Кантора), к множеству всех подмножеств этого множества, к множеству всех подмножеств этого нового множества и т. д., мы будем получать ряд множеств все более возрастающей мощности. Есть ли какой-то предел этому возрастанию? Ответить на этот вопрос можно, только введя в рассмотрение некоторые дополнительные понятия. Оперировать с бесконечными множествами, лишенными всякой дополнительной структуры, вообще говоря, невозможно. Поэтому Кантор ввел в рассмотрение упорядоченные множества, т.е. множества, для любых двух элементов которых определено отношение «больше» < (или «меньше» <). Это отношение должно быть транзитивным: из а<Ь и Ь<с следует: а<с. Собственно, наиболее продуктивным для теории множеств является еще более узкий класс множеств: вполне упорядоченные множества. Так называются упорядоченные множества, у которых каждое подмножество имеет наименьший элемент. Вполне упорядоченные множества легко сравнивать между собой: они отображаются одно на часть другого с сохранением порядка. Символы вполне упорядоченных множеств, или ординальные (порядковые) числа, также образуют вполне упорядоченное множество, и для них также можно определить арифметические действия: сложение (вычитание), умножение, возведение в степень. Ординальные числа играют для бесконечных множеств роль порядковых чисел, кардинальные — роль количественных. Множество (бесконечное) определенной мощности можно вполне упорядочить бесконечным числом способов, каждому из которых будет соответствовать свое ординальное число. Тем самым каждому кардиналу (Кантор ввел для обозначения кардиналов «алефы» — первую букву еврейского алфавита с индексами) К я будет соответствовать бесконечно много ординалов:

249

БЕСКОНЕЧНОЕ О 1 2 ... cuo, С0п+ 1... ю ... 0)2 ... со,, ... cucuo ... П (ординалы) 012... So ...Si ...S2 ...Хп ... Xu,,. ...t («тау»-кар- диналы) Согласно теоремам теории множеств любой «отрезок» шкалы Q. ординальных чисел, сам как множество вполне упорядоченное, будет иметь больший ординал, чем все заключенные в этом отрезке. Отсюда вытекает, что невозможно рассматривать все U. как множество, т. к. в противном случае П имело бы своим ординалом ?, которое больше всех ординалов в Q, но поскольку последнее содержит все ординалы, т.е. и ?, то было бы: ? > ? (парадокс Бурали—Форти, 1897). Кантор стремился обойти этот парадокс введением (с 1880-х гг.) понятия консистентности. Не любая множественность (Vielheit) есть множество (Menge). Множественность называется консистентной, или множеством, если ее можно рассматривать, как законченное целое. Если же допущение «совместного бытия» всех элементов множественности ведет к противоречию, то множественность оказывается неконсистентной, и ее, собственно, нельзя рассматривать в теории множеств. Такими неконсистентными множествами оказываются, в частности, Cl — множество всех ординальных чисел и т («тау») — множество всех кардиналов («алефов»). Тем самым мы опять возвращаемся к бесконечности как к процессу. Как пишет математик 20 в. П. Вопенка: «Теория множеств, усилия которой были направлены на актуализацию потенциальной бесконечности, оказалась неспособной потенциальность устранить, а только смогла переместить ее в более высокую сферу» (Вопенка П. Математика в альтернативной теории множеств. — «Новое в зарубежной науке. Математика», 1983, № 31, с. 124.) Это не смущало, однако, самого Кантора. Он считал, что шкала «алефов» поднимается до бесконечности самого Бога и поэтому то, что последняя оказывается математически невыразимой, было для него само собой разумеющимся: «Я никогда не исходил из какого-либо «Genus supremum» актуальной бесконечности. Совсем наоборот, я строго доказал абсолютное несуществование «Genus supremum» для актуальной бесконечности. То, что превосходит все бесконечное и трансфинитное, не есть «Genus»; это есть единственное, в высшей степени индивидуальное единство, в которое включено все, которое включает «Абсолютное», непостижимое для человеческого понимания. Это есть «Actus Purissimus», которое многими называется Богом» (Meschkowski H. Zwei unveroffentlichte Briefe Georg Cantors. — «Der Mathematikuntemcht», 1971, № 4, S. 30-34).

153
Перейти на страницу:
Мир литературы