Выбери любимый жанр

Вселенная, жизнь, разум - Шкловский Иосиф Самуилович - Страница 25


Изменить размер шрифта:

25

Особенно впечатляюще активность ядер проявляет себя в радиодиапазоне. Еще в 1946 г., на заре радиоастрономии, была открыта первая галактика, являющаяся исключительно мощным источником радиоизлучения. Это – знаменитый объект Лебедь А. В настоящее время число известных занесенных в каталог радиоисточников, находящихся в Метагалактике, превосходит уже 10 000. Все они являются галактиками, по каким-то причинам сильно излучающими в радиодиапазоне. Такие объекты получили название радиогалактик. Наша Галактика также излучает радиоволны, но мощность этого излучения (радиосветимость) у нее в десятки и сотни тысяч раз меньше, чем у радиогалактик. Вообще следует заметить, что все галактики излучают в той или иной степени радиоволны. У радиогалактик, однако, этот процесс выражен особенно сильно.

Как надежно установлено, непосредственной причиной радиоизлучения и «нормальных» галактик (вроде нашей), и «радиогалактик» является наличие там огромного количества космических лучей, которые движутся в более или менее сильных межзвездных магнитных полях. Центральным вопросом является происхождение этих космических лучей. Если в нашей Галактике они образуются при «расплывании» в межзвездной среде туманностей – остатков вспышек сверхновых (которые, как мы видели в предыдущей главе, «начинены» космическими лучами), то в случае радиогалактик дело обстоит иначе. Сверхновых звезд там явно не хватает для того, чтобы образовать очень уж большое количество космических лучей. Последние образуются при гораздо более мощных процессах взрывного характера, происходящих в ядрах в периоды их высокой активности. Обычно релятивистские частицы выбрасываются из ядер в виде двух огромных облаков, разлетающихся в разные стороны и сравнительно быстро (за «какие-нибудь» сотни тысяч лет) покидающих пределы галактики (см. фото 18-VIII). В конце концов они рассеиваются в межгалактическом пространстве. Наблюдаются случаи, когда около галактики видны два «старых», весьма протяженных, почти расплывшихся облака и одновременно по обе стороны ядра два небольших, очень ярких «молодых» облака (рис. 14). Это наглядно демонстрирует «циклический» характер активности ядер.

Существует класс галактик, который в последние годы привлекает к себе особое внимание астрономов. Речь идет о так называемых сейфертовских галактиках. Последние представляют собой более или менее нормальные спиральные галактики, но только с очень яркими и весьма активными ядрами. Спектры последних указывают на наличие там, в сравнительно малой пространственной области, довольно плотных облаков горячего газа, беспорядочно движущихся с огромными скоростями в несколько тысяч километров в секунду. Это свидетельствует о мощном выбрасывании газовых струй из ядер таких галактик. Излучение с непрерывным спектром часто бывает переменным и имеет ту же природу, что оптическое излучение Крабовидной туманности (см. предыдущую главу). Это означает, что там идет мощная генерация космических лучей.

Примерно 1 % всех спиральных галактик – сейфертовские. Все говорит о том, что сейфертовские галактики – это более или менее часто повторяющийся этап в развитии нормальных спиральных галактик. Мы можем еще сказать, что это нормальные галактики, у которых ядра находятся в активном состоянии.

Вполне возможно и даже весьма вероятно, что много миллионов лет назад ядро нашей Галактики было сейфертовским, т. е. активным. Так как Солнце и вся наша планетная система находятся очень близко от галактической плоскости, где много космической пыли, мы не можем методами оптической астрономии наблюдать ядро нашей Галактики. Однако в радио- и инфракрасном диапазоне это оказывается возможным. На рис. 15 приведено «радиоизображение» области галактического центра. Компактный источник размерами в 10 секунд дуги в центре рис. 15 и есть ядро нашей Галактики. Так как оно находится от нас на расстоянии около 30 000 световых лет, его линейные размеры оказываются меньше 1 пк. Недавние радиоастрономические наблюдения показали, что в центре ядра имеется еще меньшее образование, размеры которого меньше нескольких тысячных парсека. По всем признакам в настоящее время ядро нашей Галактики «спокойно», хотя следы его довольно высокой активности в прошлом можно и сейчас наблюдать в виде газовых струй, поднимающихся над плоскостью Галактики на расстояние в несколько сотен парсек.

Интересно, что галактическое ядро также является источником инфракрасного излучения. Угловые размеры этого источника – 10 секунд дуги, т. е. такие же, как и у совпадающего с ним радиоисточника. Из-за огромной величины поглощения света межзвездной пылью оптическое излучение ядра нашей Галактики наблюдать нельзя. Тем не менее из анализа инфракрасного излучения ядра можно сделать вывод, что там, в области поперечником всего лишь в 1 пк, находится несколько миллионов звезд. Это означает, что звездная плотность ядра нашей Галактики в десятки миллионов раз больше, чем в «галактических» окрестностях Солнца!

Вселенная, жизнь, разум - i_019.png

Рис. 14. «Радиоизображение» галактики NGC 5128

В центре туманности Андромеды в оптических лучах наблюдается компактный объект с угловыми размерами 1″ × 1,5″. Его видимая звездная величина около 12m. Так как расстояние до этой гигантской звездной системы около 700 000 пк, то линейные размеры ее ядра 3 × 5 пк, а светимость соответствует нескольким десяткам миллионов Солнц. Заметим, что оптические наблюдения ядра туманности Андромеды возможны потому, что ее экваториальная плоскость наклонена к лучу зрения под большим углом, так что протяженность поглощающего свет слоя межзвездной пыли сравнительно невелика. Между тем из-за того что Солнце находится очень близко от галактической плоскости, к которой концентрируется межзвездная пыль, излучение от центра нашей Галактики проходит через огромную толщу поглощающего свет вещества.

Вселенная, жизнь, разум - i_020.png

Рис. 15. «Радиоизображение» области галактического центра

В 1963 г. были обнаружены метагалактические (т. е. расположенные за пределами нашей Галактики) объекты нового типа. Это открытие было сделано голландским астрономом Маартеном Шмидтом, работающим в

Калифорнии. Указанные объекты имеют звездообразный вид и некоторые из них еще раньше были отождествлены с радиоисточниками весьма малых угловых размеров. Спектр этих «квазизвездных объектов», или, как их сейчас повсеместно называют, квазаров состоит из ярких линий излучения на «непрерывном» фоне. Совершенно неожиданно Шмидт отождествил их с обычными линиями водорода, кислорода и магния, но только сильно смещенными по спектру в красную сторону. Если через Δλ = λ – λ0 обозначить разность наблюдаемой длины волны и измеренной в лаборатории или в «близких» туманностях, то величина z = (λ – λ0)/λ0 характеризует красное смещение спектральных линий. Она одинакова для всех линий данного источника. Для первого из исследованных Шмидтом квазаров z = 0,36. В дальнейшем было открыто много (несколько сотен) подобных объектов, причем наибольшее из известных красных смещений Z — 4. Эта величина фантастически велика – ничего подобного до этого астрономы не обнаружили ни у одного небесного светила! Из определения Z следует, что λ/λ0 = 1 + z. А это означает, что в спектрах квазаров наблюдаются далекие ультрафиолетовые линии, из-за огромного красного смещения «съехавшие» в видимую часть спектра. Если бы не такое красное смещение, эти линии никогда бы не наблюдались, так как земная атмосфера полностью поглощает ультрафиолетовое излучение.

Теперь уже мало кто сомневается, что причиной красного смещения квазаров является эффект Доплера. Следовательно, все квазары удаляются от нашей Галактики с огромными скоростями, вплоть до 277 тыс. км/с, т. е. вполне сравнимыми со скоростью света![28] Эти огромные скорости связаны с расширением Вселенной (см. следующую главу).

25
Перейти на страницу:
Мир литературы