Выбери любимый жанр

Вселенная, жизнь, разум - Шкловский Иосиф Самуилович - Страница 23


Изменить размер шрифта:

23

При кругообороте вещества в Галактике (по схеме «межзвездный газ → звезды – > звезды + межзвездный газ») значительная часть его остается в звездном состоянии в недрах «мертвых» белых карликов, нейтронных звезд и, возможно, черных дыр. Кроме того, из-за ограниченности возраста Галактики звезды, образовавшиеся даже в самую раннюю эпоху ее существования и имеющие массу меньше солнечной, еще не успели «сойти» с главной последовательности. Следовательно, они даже «частично» не успели вернуть в межзвездное пространство затраченное на их образование вещество. Из сказанного следует, что количество межзвездной среды в Галактике должно по мере ее развития убывать. Это важный вывод о направлении развития нашей Галактики. Та же тенденция в развитии должна быть и у остальных звездных систем.

В процессе кругооборота межзвездного газа непрерывно меняется его химический состав – он «обогащается» гелием и тяжелыми элементами. Прежде чем вернуться в межзвездную среду газ длительное время находился в недрах звезд при достаточно высоких температуре и давлении. В нем происходили термоядерные реакции водородные и гелиевые. По этой причине химический состав его медленно менялся: водород постепенно «выгорал», количество гелия росло, возрастало также количество тяжелых элементов. Последние будут образовываться из-за реакции

34Не → 12С, 12С + 4Не → 16О

и дальнейших реакций 12С и 16О с протонами и нейтронами. При таких реакциях будут преимущественно образовываться изотопы 13С и 17О.

Однако необходимо подчеркнуть, что самые тяжелые элементы этим способом «постепенного наращивания» образоваться не могут. Дело в том, что по мере такого «роста» ядер путем присоединения к ним новых нуклонов они с неизбежностью должны стать неустойчивыми ядрами радиоактивных изотопов некоторых элементов. Эти ядра распадутся до того, как к ним будет присоединен очередной нуклон. Тем самым дальнейший процесс «утяжеления» ядра путем последовательного присоединения нуклонов будет остановлен.

Где же могут образовываться сверхтяжелые элементы? По современным представлениям «тиглем», в котором «варятся» эти элементы, могут быть вспышки сверхновых. По-видимому, при взрыве такой звезды происходят цепные реакции, сопровождающиеся образованием весьма большого количества нейтронов. Не исключено, что столь большое количество нейтронов обеспечит последующий захват ядрами двух и более нейтронов, так что промежуточные ядра не успевают распасться. После того как такие ядра быстро захватят очередной нейтрон, они станут устойчивыми, и дальнейший рост их будет уже идти без помех. Так могут образовываться элементы вплоть до трансурановых.

В результате вспышек сверхновых в межзвездное пространство непрерывно поступают тяжелые и сверхтяжелые элементы, которые постепенно перемешиваются с межзвездным газом. Мы видели, что сверхновые II типа – это молодые массивные звезды. Так как скорость образования таких звезд из межзвездной среды сильно зависит от плотности последней (имеются некоторые основания полагать, что она пропорциональна кубу плотности), то мы приходим к следующему интересному выводу.

Раньше, когда в Галактике содержание межзвездного газа было значительно больше, чем сейчас, и скорость процесса образования звезд из него была много выше современной, сверхновые звезды вспыхивали гораздо чаще. Специально выполненные расчеты показывают, что когда возраст Галактики был меньше 1 млрд лет, частота вспышек сверхновых была примерно в 100 раз большей, чем сейчас.

Учитывая это обстоятельство, можно сделать вывод, что за всю историю развития Галактики в ней вспыхнуло примерно 1 млрд сверхновых звезд. Этого количества как будто бы достаточно для объяснения наблюдаемого содержания тяжелых и сверхтяжелых элементов в межзвездном газе и образовавшихся из него в разное время звезд «второго поколения». В то же время звезды, образовавшиеся в эпоху формирования Галактики (это субкарлики и звезды, входящие в состав шаровых скоплений, массы которых меньше одной солнечной), сохранили, по крайней мере в своих наружных слоях, «первоначальный» химический состав межзвездной среды, из которой они образовались. И действительно, у таких звезд «первого поколения» относительное содержание тяжелых элементов в десятки раз меньше, чем у Солнца, которое является звездой «второго поколения». Таким образом, наблюдаемые характерные различия в химическом составе звезд главной последовательности и субкарликов, о которых шла речь в гл. 2, находят естественное объяснение в рамках общей картины непрерывного обогащения вещества Галактики тяжелыми элементами.

До сих пор речь шла преимущественно о нашей звездной системе – Галактике. Общие сведения о нашей Галактике, а также о других галактиках уже излагались в гл. 1. Здесь мы остановимся на морфологических различиях между галактиками. Подобно тому как была в свое время разработана классификация звезд, основывающаяся на их спектрах и светимостях и нашедшая свое выражение в знаменитой диаграмме Герцшпрунга – Рассела (см. рис. 6–8), был классифицирован и мир галактик. Известно, что классификация – это первый шаг к познанию закономерностей природы. Вспомним, например, Линнеевскую классификацию животного и растительного мира. Последующее развитие науки приводит к более глубокому пониманию чисто эмпирической классификации. Например, только спустя около 40 лет был правильно понят эволюционный смысл диаграммы Герцшпрунга – Рассела.

Общепринятая классификация галактик была предложена великим американским астрономом Э.П. Хабблом еще в 1920-х годах. Он же немного позже открыл знаменитое красное смещение в спектрах галактик (см. гл. 1), вытекающее из развитой несколькими годами раньше космологической теории выдающегося советского математика А.А. Фридмана. Таким образом, не будет преувеличением сказать, что Хаббл открыл Метагалактику – вот уже действительно самое большое открытие в истории науки…

Согласно Хабблу, галактики делятся на три основных типа: а) эллиптические, б) спиральные, в) неправильные. Фотографии типичных представителей всех классов галактик приведены на фото 6-II–III. Эллиптические галактики (Е-галактики) представляют собой сфероиды с разной степенью сплюснутости и с большой концентрацией яркости к центру Как показали последующие спектроскопические исследования, Е-галактики состоят из огромного количества старых звезд малой массы с избыточным содержанием водорода. Такой же природы звезды, образующие сферическую составляющую нашей Галактики (см. гл. 1).

Спиральные галактики (S-галактики) наряду со сферической звездной составляющей характеризуются наличием нескольких спиральных рукавов неправильной, клочковатой структуры. Хотя суммарная масса этих рукавов в сотни раз меньше массы сферической составляющей соответствующей галактики, они резко выделяются из-за присутствия значительного количества молодых массивных звезд высокой светимости. Эти звезды непрерывно образуются из облаков межзвездной газопылевой среды, концентрирующейся к плоскости, в которой лежат спиральные рукава. Заметим, что у Е-галактик содержание межзвездного газа в сотни и тысячи раз меньше, чем у S-галактик. Поэтому процесс звездообразования в Е-галактиках практически давно уже прекратился.

Наконец, неправильные галактики характеризуются своей нерегулярной формой и сравнительно малой массой. Кстати, по своей массе (определяемой количеством находящихся в них звезд) галактики различаются в весьма широких пределах. Наша Галактика с ее массой в 1011 солнечных масс принадлежит к числу гигантов. Туманность Андромеды (М31), как уже говорилось в гл. 1, имеет приблизительно втрое большую массу. Пожалуй, самой большой из известных масс обладает знаменитая галактика М87, находящаяся в центральной части скопления галактик в созвездии Девы. По-видимому, масса этой галактики в сотню раз превышает массу нашей Галактики. На другом полюсе находятся карликовые галактики, массы которой – 107 солнечной, что только в несколько десятков раз больше массы шаровых скоплений.

23
Перейти на страницу:
Мир литературы