Выбери любимый жанр

Краткая история времени... - Хокинг Стивен Уильям - Страница 6


Изменить размер шрифта:

6

Отсутствие абсолютного эталона покоя означает, что невозможно определить, произошли ли некие два события в одной и той же точке пространства, если известно, что они имели место в разные моменты времени. Пусть, например, наш теннисный шарик в движущемся поезде отскакивает от стола вертикально вверх и, падая вниз, ударяется через секунду о стол в той же точке. Тому, кто стоит у железнодорожного полотна, показалось бы, что точки соприкосновения шарика со столом разделены расстоянием около сорока метров, которое прошел поезд за время между подскоками. Следовательно, отсутствие абсолютного состояния покоя означает, что никакому событию нельзя приписать абсолютного положения в пространстве, как это полагал Аристотель. Положение событий в пространстве и расстояния между ними должны быть разными для наблюдателя, едущего в поезде, и для наблюдателя, который стоит рядом с проходящим поездом, и нет никаких оснований считать, что положения, фиксируемые одним из этих наблюдателей, более предпочтительны, чем положения, фиксируемые другим.

Ньютона сильно беспокоило отсутствие абсолютного положения в пространстве или, как его называли, абсолютного пространства, потому что это противоречило его идее абсолютного Бога. И он фактически отказался принять отсутствие абсолютного пространства, несмотря на то, что такое отсутствие вытекало из законов, открытых им самим. Многие резко критиковали Ньютона за его иррациональное упорство, и в частности епископ Беркли – философ, считавший, что все материальные объекты, а также пространство и время – иллюзия. (Узнав о таких воззрениях Беркли, знаменитый д-р Джонсон воскликнул: «Я опровергаю это вот как!» – и так стукнул ногой по большому камню, что чуть не потерял равновесие).

И Аристотель, и Ньютон верили в абсолютное время. Иными словами, они считали, что временной интервал между двумя событиями можно однозначно измерить и что результат будет одинаков независимо от того, кто производит измерения, лишь бы у измеряющего были правильные часы. Время было полностью отделено от пространства и считалось не зависящим от него. Такова была точка зрения большинства, точка зрения здравого смысла. Но нам пришлось изменить свои представления о пространстве и времени. Представления, основанные на «здравом смысле», относятся к сравнительно медленным объектам (яблоко, планета), но они оказываются совершенно неуместными, когда скорости становятся близкими к скорости света.

То, что свет распространяется с конечной, хотя и очень большой скоростью, установил в 1676 г. датский астроном Оле Христенсен Рёмер. Он обнаружил, что моменты прохождения спутников Юпитера за его диском следуют один за другим не через равные интервалы, как должно быть, если спутники вращаются вокруг Юпитера с постоянной скоростью. При вращении Земли и Юпитера вокруг Солнца расстояние между этими двумя планетами изменяется. Рёмер заметил, что затмения лун Юпитера тем больше запаздывают, чем дальше мы от него находимся. Он объяснил это тем, что свет от спутников идет до нас дольше, когда мы находимся дальше. Однако Рёмер не очень точно измерял изменения расстояния от Земли до Юпитера, и поэтому полученное им значение скорости света оказалось равным 140.000 миль/с, тогда как современное значение составляет 186.000 миль/с (1 миля = 1,609 км. Современное значение скорости света равно 299.792.458 м/с. – прим. перев.). Тем не менее достижение Рёмера было выдающимся, ибо он не только доказал, что свет распространяется с конечной скоростью, но и измерил ее, причем все это за одиннадцать лет до выхода в свет книги Ньютона «Математические начала».

Настоящей теории распространения света не существовало до 1865 г., когда английский физик Джеймс Кларк Максвелл сумел объединить две частные теории, с помощью которых тогда описывали электрические и магнитные силы. Согласно уравнениям Максвелла, в электромагнитном поле, составленном из двух полей, могут существовать волноподобные возмущения, которые распространяются с постоянной скоростью, как волны на поверхности пруда. Если длина волны (т. е. расстояние между гребнями двух соседних волн) составляет метр или больше, то мы имеем дело с радиоволнами. Более короткие волны называются волнами сверхвысокочастотного диапазона (если их длина – порядка сантиметра) и волнами инфракрасного диапазона (до десяти тысячных сантиметра). Длина волны видимого света составляет всего лишь сорок-восемьдесят миллионных долей сантиметра. Еще короче волны ультрафиолетового, рентгеновского и гамма-излучений.

Теория Максвелла предсказывала, что радиоволны и свет должны распространяться с некоторой фиксированной скоростью. Но поскольку теория Ньютона покончила с представлением об абсолютном покое, теперь, говоря о фиксированной скорости света, нужно было указать, относительно чего измеряется эта фиксированная скорость. В связи с этим было постулировано существование некой субстанции, названной «эфиром», которой наполнено все, даже «пустое» пространство. Световые волны распространяются в эфире так же, как звуковые в воздухе, и, следовательно, их скорость – это скорость относительно эфира. Наблюдатели, с разными скоростями движущиеся относительно эфира, должны видеть, что свет идет к ним с разной скоростью, но скорость света относительно эфира должна оставаться при этом неизменной. В частности, коль скоро Земля движется в эфире по своей орбите вокруг Солнца, скорость света, измеренная в направлении движения Земли (при движении в сторону источника света), должна превышать скорость света, измеренную под прямым углом к направлению движения (т. е. когда мы не движемся к источнику). В 1887 г. Альберт Майкельсон (впоследствии ставший первым американцем, удостоенным Нобелевской премии по физике) и Эдвард Морли поставили в Кливлендской школе прикладных наук очень точный эксперимент. Майкельсон и Морли сравнивали значение скорости света, измеренной в направлении движения Земли, с ее значением, измеренным в перпендикулярном направлении. К своему огромному удивлению, они обнаружили, что оба значения совершенно одинаковы!

С 1887 по 1905 г. был сделан ряд попыток (наиболее известная из которых принадлежит датскому физику Хендрику Лоренцу) объяснить результат эксперимента Майкельсона и Морли тем, что все движущиеся в эфире объекты сокращаются в размерах, а все часы замедляют свой ход. Но в 1905 г. никому доселе не известный служащий Швейцарского патентного бюро по имени Альберт Эйнштейн опубликовал ставшую потом знаменитой работу, в которой было показано, что никакого эфира не нужно, если отказаться от понятия абсолютного времени. Через несколько недель ту же точку зрения высказал один из ведущих французских математиков Анри Пуанкаре. Аргументы, выдвинутые Эйнштейном, были ближе к физике, чем аргументы Пуанкаре, который подошел к этой задаче как к математической. Об Эйнштейне обычно говорят как о создателе новой теории, но и имя Пуанкаре связывают с разработкой важной се части.

Фундаментальный постулат этой теории относительности, как стали называть новую теорию, состоял в том, что законы науки должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от скорости их движения. Этот постулат был справедлив для законов движения Ньютона, но теперь он был распространен на теорию Максвелла и на скорость света; скорость света, измеренная любыми наблюдателями, должна быть одинакова независимо от того, с какой скоростью движутся сами наблюдатели. Из этого простого принципа вытекает ряд замечательных следствий. Самые известные из них – это, наверное, эквивалентность массы и энергии, нашедшая свое выражение в знаменитом уравнении Эйнштейна Е = mc^2 (где Е – энергия, m – масса, а с – скорость света), и закон, согласно которому ничто не может двигаться быстрее света. В силу эквивалентности массы и энергии энергия, которой обладает движущийся объект, должна теперь добавляться к его массе. Другими словами, чем больше энергия, тем труднее увеличить скорость. Правда, этот эффект существенен лишь при скоростях, близких к скорости света. Если, например, скорость какого-нибудь объекта составляет 10% скорости света, то его масса лишь на 0,5% больше нормальной, тогда как при скорости, равной 90% скорости света, масса уже в 2 раза превышает нормальную. По мере того как скорость объекта приближается к скорости света, масса растет все быстрее, так что для дальнейшего ускорения требуется все больше и больше энергии. На самом деле скорость объекта никогда не может достичь скорости света, так как тогда его масса стала бы бесконечно большой, а поскольку масса эквивалентна энергии, для достижения такой скорости потребовалась бы бесконечно большая энергия. Таким образом, любой нормальный объект в силу принципа относительности навсегда обречен двигаться со скоростью, не превышающей скорости света. Только свет и другие волны, не обладающие «собственной» массой, могут двигаться со скоростью света.

6
Перейти на страницу:
Мир литературы