Выбери любимый жанр

Гистология. Полный курс за 3 дня - Селезнева Т. Д. - Страница 7


Изменить размер шрифта:

7

В ядре происходят следующие преобразования:

1) конденсация хроматина и образование хромосом, состоящих из двух хроматид;

2) исчезновение ядрышка;

3) распад кариолеммы на отдельные пузырьки.

В цитоплазме происходят следующие изменения:

1) редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки;

2) формирование из микротрубочек веретена деления;

3) редукция зернистой ЭПС и также уменьшение числа свободных и прикрепленных рибосом.

В метафазе происходит следующее:

1) образование метафазной пластинки (или материнской звезды);

2) неполное обособление сестринских хроматид друг от друга.

Для анафазы характерно:

1) полное расхождение хроматид и образование двух равноценных дипольных наборов хромосом;

2) расхождение хромосомных наборов к полюсам митотического веретена и расхождение самих полюсов.

Для телофазы характерны:

1) деконденсация хромосом каждого хромосомного набора;

2) формирование из пузырьков ядерной оболочки;

3) цитотомия, (перетяжка двухядерной клетки на две дочерние самостоятельные клетки);

4) появление ядрышек в дочерних клетках.

Интерфазу подразделяют на три периода:

1) I – J1 (или пресинтетический период);

2) II – S (или синтетический);

3) III – J2 (или постсинтетический период).

В пресинтетическом периоде в клетке происходят следующие процессы:

1) усиленное формирование синтетического аппарата клетки – увеличение числа рибосом и различных видов РНК (транспортной, информационной, рибосомальной);

2) усиление синтеза белка, необходимого для роста клетки;

3) подготовка клетки к синтетическому периоду – синтез ферментов, необходимых для образования новых молекул ДНК.

Для синтетического периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.

Постсинтетический период характеризуется усиленным синтезом информационной РНК и всех клеточных белков, особенно тубулинов, необходимых для формирования веретена деления.

Клетки некоторых тканей (например, гепатоциты) по выходе из митоза вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение ряда лет, при этом не вступая в синтетический период. Только при определенных обстоятельствах (при повреждении или удалении части печени) они вступают в нормальный клеточный цикл (или в синтетический период), синтезируя ДНК, а затем митотически делятся. Жизненный цикл таких редко делящихся клеток можно представить следующим образом:

1) митоз;

2) J1-период;

3) J0-период;

4) S-период;

5) J2-период.

Большинство клеток нервной ткани, особенно нейроны центральной нервной системы, по выходе из митоза еще в эмбриональном периоде в дальнейшем не делятся.

Жизненный цикл таких клеток состоит из следующих периодов:

1) митоза – I период;

2) роста – II период;

3) длительного функционирования – III период;

4) старения – IV период;

5) смерти – V период.

На протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в состав разнообразных клеточных структур, постепенно заменяются новыми, т. е. клетки постепенно обновляются. На протяжении жизненного цикла в цитоплазме неделящихся клеток накапливаются различные, прежде всего липидные включения, в частности липофусцин, рассматриваемый в настоящее время как пигмент старения.

Мейоз – способ деления клеток, при котором происходит уменьшение числа хромосом в дочерних клетках в 2 раза, характерен для половых клеток. В данном способе деления отсутствует редупликация ДНК.

Кроме митоза и мейоза, выделяется также эндорепродукция, не приводящая к увеличению количества клеток, но способствующая увеличению количества работающих структур и усилению функциональной способности клетки.

Для данного способа характерно, что после митоза клетки сначала вступают в J1-, а затем в S-период. Однако такие клетки после удвоения ДНК не вступают в J2-период, а затем в митоз. В результате этого количество ДНК становится увеличенным вдвое – клетка превращается в полиплоидную. Полиплоидные клетки могут вновь вступать в S-период, в результате чего они увеличивают свою плоидность.

В полиплоидных клетках увеличивается размер ядра и цитоплазмы, клетки становятся гипетрофированными. Некоторые полиплоидные клетки после редупликации ДНК вступают в митоз, однако он не заканчивается цитотомией, так как такие клетки становятся двухъядерными.

Таким образом, при эндорепродукции не происходит увеличения числа клеток, но увеличивается количество ДНК и органелл, следовательно, и функциональная способность полиплоидной клетки.

Способностью к эндорепродукции обладают не все клетки. Наиболее характерна эндорепродукция для печеночных клеток, особенно с увеличением возраста (например, в старости 80% гепатоцитов человека являются полиплоидными), а также для ацинозных клеток поджелудочной железы и эпителия мочевого пузыря.

Реакция клеток на внешнее воздействие

Данная морфология клеток не является стабильной и постоянной. При воздействии на организм различных неблагоприятных факторов внешней среды в строении клетки происходят различные изменения. В зависимости от факторов воздействия изменение клеточных структур происходит неодинаково в клетках разных органов и тканей. При этом изменения клеточных структур могут быть приспособительными и обратимыми или дезадаптивными, необратимыми (патологическими). Определить границу между обратимыми и необратимыми изменениями не всегда возможно, так как адаптивные могут перейти в дезадаптивные при дальнейшем действии фактора внешней среды.

Изменения в ядре при действии факторов внешней среды:

1) набухание ядра и смещение его на периферию клетки;

2) расширение перинуклеарного пространства;

3) образование инвагинаций кариолеммы (впячивание внутрь ядра отдельных участков его оболочки);

4) конденсация хроматина;

5) пикноз (сморщивание ядра и уплотнение (коагуляция хроматина));

6) кариорексис (распад ядра на фрагменты);

7) кариолизис (растворение ядра).

Изменения в цитоплазме:

1) уплотнение, а затем набухание митохондрий;

2) дегрануляция зернистой ЭПС (слущивание рибосом и фрагментация канальцев на отдельные вакуоли);

3) расширение цистерн и распад на вакуоли пластинчатого комплекса Гольджи;

4) набухание лизосом и активация их гидролаз;

5) увеличение числа аутофагосом;

6) распад веретена деления и развитие патологического митоза в процессе митоза.

Изменения цитоплазмы могут быть обусловлены:

1) структурными изменениями плазмолеммы, что приводит к усилению ее проницаемости и гидратации гиалоплазмы;

2) нарушением обмена веществ, что приводит к снижению содержания АТФ;

3) снижением расщепления или увеличением синтеза включений (гликогена, липидов) и их избыточном накоплением.

После устранения неблагоприятных факторов внешней среды адаптивные изменения структур исчезают и морфология клетки полностью восстанавливается. При развитии неадаптивных изменений даже после устранения действия неблагоприятных факторов внешней среды изменения продолжают нарастать, и клетка погибает.

Тема 6. ОБЩАЯ ЭМБРИОЛОГИЯ

Определение и составные части эмбриологии

Эмбриология – наука о закономерностях развития животных организмов от момента оплодотворения до рождения (или вылупливания на яйца). Следовательно, эмбриология изучает внутриутробный период развития организма, т. е. часть онтогенеза.

Онтогенез – развитие организма от оплодотворения до смерти, подразделяется на два периода:

1) эмбриональный (эмбриогенез);

2) постэмбриональный (постнатальный).

7
Перейти на страницу:
Мир литературы