Выбери любимый жанр

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Грин Брайан - Страница 72


Изменить размер шрифта:

72

Недели, последовавшие после того, как результат был получен, были крайне волнующими. Мы осознавали, что находимся вблизи новой области физики струн. Мы показали, что изначально установленная Эйнштейном тесная взаимосвязь между геометрией и физикой в теории струн существенно модифицируется. Радикально отличающиеся геометрические структуры, которые в общей теории относительности имели бы различные физические свойства, в теории струн приводят к эквивалентным физическим моделям. Вдруг мы сделали ошибку? Вдруг в их физических свойствах имеются тонкие отличия, которые мы не заметили? Например, когда мы сообщили о своих результатах Яу, он вежливо, но твердо сказал, что мы, должно быть, ошиблись; по его мнению, с математической точки зрения наши результаты слишком странные, чтобы оказаться справедливыми. Его мнение заставило нас взять длительный перерыв для проверок.

Одно дело ошибиться в скромном утверждении, которое мало кому интересно. Но наш результат был неожиданным шагом в новом направлении, и неминуемо вызвал бы бурные отклики. Если мы ошибемся, об этом узнают все.

В конце концов, после всех мыслимых проверок и перепроверок, убежденность в нашей правоте укрепилась, и мы решили опубликовать результат. Несколькими днями позже, когда я сидел в своем кабинете в Гарварде, зазвонил телефон. Это был Филипп Канделас из Техасского университета, который сразу же осведомился, сижу я или стою. Я сказал, что сижу. Канделас сообщил мне, что он и двое его студентов, Моника Линкер и Рольф Шиммригк, обнаружили закономерность, услышав о которой, я непременно упаду со стула. Тщательно изучив огромный набор пространств Калаби-Яу, моделированных на компьютере, они обнаружили, что почти все пространства идут парами, отличающимися заменами чисел четномерных и нечетномерных отверстий. Я ответил ему, что все еще сижу: мы с Плессером получили тот же результат. Оказалось, что работа Канделаса и наша работа дополняют друг друга; мы с Плессером пошли на один шаг дальше и показали, что все физические свойства зеркальных пар одинаковы, а Канделас со своими учениками показал, что на пары разбивается гораздо большее число многообразий Калаби-Яу. Эти две работы и привели к открытию зеркальной симметрии в теории струн7).

Физика и математика зеркальной симметрии

Ослабление жесткой и однозначной эйнштейновской взаимосвязи между геометрией пространства и наблюдаемыми физическими явлениями есть яркий пример новизны теории струн. Однако развитие теории струн далеко не исчерпывается изменением философской концепции. Зеркальная симметрия, в частности, дает мощное средство для исследования как физических аспектов теории струн, так и математических аспектов теории пространств Калаби-Яу.

Математики, работающие в области так называемой алгебраической геометрии, изучали пространства Калаби-Яу из чисто математического интереса задолго до открытия теории струн. Они обнаружили множество свойств этих геометрических пространств, никоим образом не предполагая, что их результаты будут когда-нибудь использоваться физиками. Однако определенные черты теории пространств Калаби-Яу оказались слишком сложными для всестороннего математического исследования. Открытие зеркальной симметрии существенно изменило положение дел. По существу, зеркальная симметрия говорит о том, что определенные пары пространств Калаби-Яу, которые ранее считались совершенно независимыми, тесно связаны теорией струн. Связь состоит в том, что если в качестве дополнительных свернутых измерений выбирать два пространства из любой пары, получатся физически эквивалентные вселенные. Такая неожиданная взаимосвязь дает мощный инструмент математических и физических исследований.

Представим, например, что вы хотите вычислить физические характеристики — массы и заряды, — соответствующие выбору одного из возможных пространств Калаби— Яу в качестве дополнительных измерений. При этом вас не особенно заботит степень согласования ваших результатов с экспериментом, так как в настоящее время, в силу ряда рассмотренных выше теоретических и технических причин, экспериментальное подтверждение результатов достаточно проблематично. Вместо этого проводится мысленный эксперимент, который должен показать, как выглядел бы мир, если бы было выбрано данное пространство Калаби-Яу. Сначала все идет хорошо, но в середине такого теоретического анализа возникает необходимость математического расчета непомерной сложности. Никто, ни один из лучших специалистов-математиков, не может подсказать, как поступать дальше. Двигаться некуда. И тут выясняется, что у этого пространства Калаби-Яу есть зеркальный партнер. Поскольку окончательные физические свойства будут одинаковы для каждого члена зеркальной пары, вычисления можно проводить для любого из этих пространств. Таким образом, можно перевести сложное вычисление для первого из пространств на язык его зеркального партнера, и результат вычислений, т. е. физические свойства, будут теми же. Сначала можно предположить, что измененный вариант вычисления будет таким же сложным, как первоначальный. Но возникает приятная и поразительная неожиданность. Обнаруживается, что вид вычисляемого выражения очень сильно отличается от исходного, и, в некоторых случаях, невообразимо сложное вычисление становится поразительно легким в зеркальном пространстве. Не существует простого объяснения, почему это происходит, но, по крайней мере для определенных вычислений, это действительно так, и уменьшение сложности расчетов оказывается впечатляющим. В результате препятствие на пути решения задачи становится преодолимым.

Ситуация схожа со случаем, когда требуется точно подсчитать число апельсинов, плотно набитых в огромный ящик, скажем, со сторонами 15 м и глубиной 3 м. Пересчитывать апельсины по одному крайне неблагодарное занятие. Но тут, к счастью, находится человек, который присутствовал в момент, когда завезли эти апельсины. Он сообщает, что апельсины были аккуратно упакованы в меньшие коробки, занимающие куб, по длине, ширине и глубине которого умещалось 20 коробок. Оценив, что число коробок равно 8 000, остается лишь вычислить, сколько апельсинов входит в одну коробку, и задача решена. В итоге, путем грамотного преобразования вычислений удается значительно упростить задачу. В теории струн ситуация с громоздкими вычислениями аналогична. Что касается пространств Калаби-Яу, вычисления могут состоять из очень большого числа этапов. Однако при переходе к расчетам для зеркального пространства вычисления можно гораздо более эффективно реорганизовать, так что выполнить их достаточно просто. Этот факт был отмечен Плессером и мной, а затем результативно использовался на практике в последующих работах Канделаса и его коллег Ксении де ла Осса и Линды Паркс из Техасского университета, а также Пола Грина из университета штата Мэриленд. Они показали, что вычисления невообразимой сложности могут быть проведены до конца с помощью идеи зеркальной пары, персонального компьютера и пары листов алгебраических выкладок.

Особенно захватывающим данный результат оказался для математиков, так как именно из-за этих вычислений многие их исследования годами находились в тупике. Теория струн, по крайней мере по утверждениям физиков, обогнала математику.

Здесь можно напомнить о многолетнем здоровом и добром соперничестве между физиками и математиками. Случилось так, что два норвежских математика, Гейр Эллингсруд и Штейн Арилд Штремме, работали над одной из многочисленных задач, которую Канделас и его коллеги успешно решили с использованием зеркальной симметрии. Грубо говоря, задача заключалась в вычислении числа сфер, которые можно упаковать внутрь некоторого пространства Калаби— Яу. Это подобно нашему примеру с подсчетом числа апельсинов в ящике. На семинаре в 1991 г. в Беркли, где собрались физики и математики, Канделас объявил о результате, полученном его группой с использованием теории струн и зеркальной симметрии: 317 206 375. Эллингсруд и Штремме, в свою очередь, объявили о результате своего очень сложного математического вычисления: 2 682 549 425. Несколько дней математики и физики спорили: кто же прав? Вопрос был принципиальным и мог, фактически, служить «лакмусовой бумажкой» для проверки достоверности количественных результатов теории струн. Некоторые даже шутливо замечали, что такая проверка — лучшее, что можно придумать ввиду невозможности проверки теории струн на эксперименте. Кроме того, в результате Канделаса заключалось нечто гораздо большее, чем просто число, каковым это было для Эллинг-сруда и Штремме. Канделас и его коллеги, кроме того, объявили о решении многих других задач неизмеримо большей сложности, за которые никогда не взялся бы ни один математик. Но можно ли верить результатам теории струн? Семинар закончился плодотворным обменом мнений между математиками и физиками, но причина расхождения результатов так и не была установлена.

72
Перейти на страницу:
Мир литературы