Выбери любимый жанр

Большая Советская Энциклопедия (ХР) - Большая Советская Энциклопедия "БСЭ" - Страница 25


Изменить размер шрифта:

25

  Х. в интерфазном ядре отделены от цитоплазмы ядерной мембраной; многими участками (прежде всего, теломерами и центромерами ) они соединены с ней, благодаря чему, как полагают, каждая Х. занимает в ядре определённое место. При подготовке клетки к делению в интерфазе происходит удвоение Х. Каждая Х. строит свою копию на основе полуконсервативной репликации ДНК. Особенностью Х. эукариот является существование многих точек начала и завершения репликации (у прокариот лишь одна точка начала и одна точка завершения репликации). Этим обеспечивается возможность неодновременной репликации разных участков Х. в ходе синтетического периода и регуляция активности Х.

  Х. в период митоза и мейоза. При переходе клетки к делению синтез ДНК и РНК в Х. прекращается, Х. приобретают всё более плотную упаковку (например, в одной Х. человека цепочка ДНК длиной 160 мм укладывается в объёме всего 0,5´10 мкм ), ядерная мембрана разрушается и Х. выстраиваются на экваторе клетки. В этот период они наиболее доступны для наблюдения и изучения их морфологии. Основная структурная единица метафазных Х., так же как и интерфазных, — нить ДНП диаметром 100—200

Большая Советская Энциклопедия (ХР) - i-images-127369266.png
, уложенная в плотную спираль. Некоторые авторы обнаруживают, что нити диаметром 100—200
Большая Советская Энциклопедия (ХР) - i-images-172772897.png
 образуют структуры второго уровня укладки — нити диаметром около 2000
Большая Советская Энциклопедия (ХР) - i-images-107229586.png
, которые и формируют тело метафазной Х. Каждая метафазная Х. состоит из хроматид (рис. 3 , 1 ), образовавшихся в результате репликации исходной интерфазной Х. Использование меченых и модифицированных предшественников ДНК позволило четко различать в Х., находящейся в метафазе митоза, дифференциально окрашенные хроматиды, благодаря чему было установлено, что при репликации Х. нередко происходит обмен участками между сестринскими хроматидами (кроссинговер ). В классической цитологии придавалось большое значение матриксу метафазной Х., его считали обязательным компонентом, в который погружены спирализованные хромонемы. Современные цитологи рассматривают матрикс метафазных Х. как остаточный материал разрушающегося ядрышка; часто он вовсе не обнаруживается.

  Формирование половых клеток у животных и растений сопровождается особым типом их деления — мейозом, и мейотические Х. имеют ряд особенностей по сравнению с митотическими. Прежде всего, при мейозе дочерние клетки получают вдвое уменьшенное число Х. (при митозе оно сохраняется одинаковым), что достигается благодаря конъюгации гомологичных Х. в профазе мейоза и двумя последовательными делениями клетки при одной репликации ДНК (подробнее см. Мейоз ). Кроме того, у мейотические Х. отмечаются временный перерыв профазы мейоза и возвращение их к интерфазному состоянию, когда Х. начинают активно синтезировать РНК. В этом периоде у большинства изученных животных организмов наблюдаются Х. типа ламповых щёток (рис. 4 ). Наконец, Х. в метафазе мейоза отличаются более плотной упаковкой.

  Несмотря на огромное число исследований, посвященных Х., изучение их структурной и функциональной организации продолжает оставаться одним из самых актуальных направлений современной биологии. Х. выполняют в клетке сложнейшие функции и имеют весьма сложную организацию, трудно поддающуюся изучению. Огромные успехи в понимании молекулярных основ строения Х. достигнуты в 60—70-е гг. 20 в. благодаря развитию молекулярной генетики . Эти успехи блестяще подтвердили основные положения хромосомной теории наследственности, углубив и развив их.

  Лит.: Вильсон Э., Клетка и ее роль в развитии и наследственности, пер. с англ., т. 1—2, М. — Л., 1936—40; Кольцов Н. К., Организация клетки, М. — Л., 1936; Прокофьева-Бельговская А. А., Строение хромосомы, в кн.: Ионизирующие излучения и наследственность, М., 1960 (Итоги науки. Биологические науки, в. 3); Кикнадзе И. И., Функциональная организация хромосом, Л., 1972; Де Робертис Э., Новинский В., Саэс Ф., Биология клетки, пер. с англ., М., 1973; Левитский Г. А., Цитология растений. Избр. труды, М., 1976; Darlington С. D., Recent advances in cytology, 2 ed., L., 1937; Geitler L., Chromosomenbau, B., 1938 (Protoplasma-Monographien, Bd 14); Ris Н., Kubai D. F., Chromosome structure, «Annual Review of Genetics», 1970, v. 4, p. 236—94; Handbook of molecular cytology, ed. by Lima-de-Faria A., Amst. — L., 1969; Chromosome structure and function, N. Y., 1974.

  И. И. Кикнадзе.

Большая Советская Энциклопедия (ХР) - i009-001-202702987.jpg

Рис. 3. Морфология одной и той же хромосомы в метафазе митоза (А) и в профазе мейоза (Б); 1 — хроматиды; 2 — центромера; 3 — хромомеры; 4 — теломеры (крупные хромомеры на концах хромосомы).

Большая Советская Энциклопедия (ХР) - i009-001-229374676.jpg

Рис. 2. Схема мейоза. Этот тип деления клетки характеризуется длительной стадией профазы (а—д). При подготовке к метафазе (г, д) гомологичные хромосомы начинают отталкиваться, затем быстро следуют два мейотических деления (е—и); хр — хромомеры.

Большая Советская Энциклопедия (ХР) - i010-001-247414386.jpg

Рис. 1. А. Схема клеточного деления — митоза: я — ядро; ц — цитоплазма; цн — центриоль; хр — хромоцентр; яд — ядрышко; вр — веретено деления клетки. Б. Схема изменения внешнего вида хромосом на разных стадиях митоза: 1 — хромосомы в интерфазе; 2—7 — хромосомы при переходе к клеточному делению: 2—4 — в профазе, 5—6 — в прометафазе и метафазе, 7 — в анафазе; 8 — в телофазе. Светлыми кружочками обозначена центромера — участок хромосомы, соединяющийся с нитями веретена деления клетки.

Большая Советская Энциклопедия (ХР) - i010-001-284315818.jpg

Рис. 4. Неактивная (а) и функционирующая (б) хромомеры; последняя образует боковые петли (бп); мхр — межхромомерные участки хромосомы.

Хромосфера

Хромосфе'ра, один из слоев атмосферы Солнца. См. Солнце .

Хромосферные вспышки

Хромосфе'рные вспы'шки, солнечные вспышки, яркие образования, наблюдаемые в активных областях хромосферы Солнца. Х. в. появляются внезапно и видны в течение непродолжительного времени — от нескольких минут до нескольких часов. См. Солнце .

Хромосферный телескоп

Хромосфе'рный телеско'п, астрономический инструмент, предназначенный для фотографирования солнечной хромосферы в центральной части профиля какого-либо сильной фраунгоферовой линии солнечного спектра. Для этого чаще всего используются линия водорода Нa (653,6 нм ) и линия К ионизованного кальция (393,4 нм ). В этих спектральных линиях хромосфера оказывается непрозрачной к излучению более глубоких слоев Солнца. Х. т. представляет собой гелиограф, в котором при помощи специального монохроматора, обычно интерференционно-поляризационного светофильтра , получается монохроматическое изображение Солнца. Полоса пропускания светофильтра в случае Нa не должна превышать 0,05 нм и, как правило, составляет 0,02—0,01 нм. Для возможности изучения хромосферных слоев на разных глубинах эту полосу смещают по спектру в пределах профиля данной спектральной линии. При настройке на центр линии наблюдают более высокие слои хромосферы. Диаметр изображения солнечного диска в фокальной плоскости камеры Х. т. должен быть не менее 2—3 см для изучения хромосферы на всём диске Солнца. Для исследования тонкой структуры отдельных деталей в хромосфере диаметр изображения при помощи специальных линз увеличивают до 12—20 см. Х. т. используется в Службе Солнца при патрулировании хромосферных вспышек и наблюдении протуберанцев . Для регистрации быстро протекающих хромосферных процессов часто применяется кинематографирование.

25
Перейти на страницу:
Мир литературы