Выбери любимый жанр

Большая Советская Энциклопедия (ФЛ) - Большая Советская Энциклопедия "БСЭ" - Страница 27


Изменить размер шрифта:

27

  В полупроводниковых приборах Ф. э. обусловлены случайным характером процессов генерации и рекомбинации электронов и дырок (генерационно-рекомбинационный шум) и диффузии носителей заряда (диффузионный шум). Оба процесса дают вклад как в тепловой, так и в дробовой шумы полупроводниковых приборов. Частотный спектр этих Ф. э. определяется временами жизни и дрейфа носителей. В полупроводниковых приборах наблюдаются также Ф. э., обусловленные «улавливанием» электронов и дырок дефектами кристаллической структуры (см. Дефекты в кристаллах , Полупроводники ).

  В приборах, работающих на принципе вынужденного излучения (мазеры и др.), проявляются шумы спонтанной эмиссии, обусловленные квантовым характером электромагнитного излучения.

  Технические Ф. э. связаны с температурными изменениями параметров цепей и их старением, нестабильностью источников питания, с помехами от промышленных установок, вибрацией и толчками, с нарушениями электрических контактов и т.п.

  Ф. э. в генераторах электрических колебаний вызывают модуляцию амплитуды и частоты колебаний (см. Модуляция колебаний ), что приводит к появлению непрерывного частотного спектра колебаний или к уширению спектральной линии генерируемых колебаний, составляющему величину 10-7 –10-12 от несущей частоты.

  Ф. э. приводят к появлению ложных сигналов – шумов на выходе усилителей электрических сигналов, ограничивают их чувствительность и помехоустойчивость , уменьшают стабильность генераторов и устойчивость систем автоматического регулирования и т.д.

  Лит.: Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960, гл. 13; Бонч-Бруевич А. М., Радиоэлектроника в экспериментальной физике, М., 1966; Левин М. Л., Рытов С. М., Теория равновесных тепловых флуктуаций в электродинамике, М., 1967; Малахов А. Н., Флуктуации в автоколебательных системах, М., 1968; Ван дер Зил А., Шум, пер. с англ., М., 1973.

  И. Т. Трофименко.

Флуктуационная гипотеза

Флуктуацио'нная гипо'теза, космологическая гипотеза Л. Больцмана , согласно которой весь наблюдаемый звёздный мир, включая Солнечную систему, является одной из грандиозных флуктуаций во Вселенной, находящейся в целом в состоянии термодинамического равновесия («тепловой смерти» Вселенной ). Распространение второго начала термодинамики на системы космологического масштабов приводило к выводу о неизбежности для этих систем, а в конечном счёте и для всей Вселенной, конечного состояния термодинамического равновесия (максимума энтропии ), при котором невозможны какие бы то ни было макроскопические изменения и движения, существование организованных структур любой природы. В то же время наблюдаемая нами часть Вселенной далека от такого состояния. В качестве возможного объяснения этого противоречия (парадокса) и была предложена Ф. г. (80-е гг. 19 в.). В рамках статистической термодинамики существование неравновесных подсистем в равновесной системе возможно, хотя и мало вероятно. Согласно же Ф. г., в равновесной Вселенной, если она достаточно велика, должны возникать не только малые, но и грандиозные (и тем более маловероятные) флуктуации.

  Ф. г. была наиболее выдающейся попыткой преодолеть упомянутый парадокс в рамках классической (дорелятивистской) физики и космологии. Однако, сточки зрения физики, вероятность флуктуации нужных масштабов настолько мала, а время ожидания её появления настолько велико, что различие между понятиями «маловероятно» и «невозможно» становится, в сущности, формальным. С мировоззренческой точки зрения представляется неудовлетворительным, что существование жизни (и вообще организованных структур) оказывается почти чудом, и, т. о., парадокс тепловой смерти, по сути дела, не устраняется, а всего лишь смягчается. Как и другие космологические парадоксы, этот парадокс вообще не мог быть последовательно преодолен в рамках классической физической картины мира: к явлениям космологического масштаба применима не классическая, а релятивистская физика (в частности, релятивистская термодинамика). Английский физик Р. Толмен показал (1928), что учёт тяготения ведёт к выводу, неожиданному с точки зрения классической термодинамики: энтропия системы может расти безгранично, не достигая какого-либо конечного состояния с максимальной энтропией. См. также Космология .

  Лит.: Больцман Л., Статьи и речи, М., 1970; Толмен Р., Относительность, термодинамика и космология, пер. с англ., М., 1974; Зельдорич Я. Б., Новиков И. Д., Строение и эволюция Вселенной, М., 1975.

  Г. И. Наан.

Флуоресцеин

Флуоресцеи'н, диоксифлуоран, жёлтые кристаллы, плохо растворимые в воде, лучше – в спирте и водных щелочах, tпл 314–316 °С (с разложением); в водных растворах существует в виде смеси (1: 1) бензоидной (1) и хиноидной форм и обладает сильной жёлто-зелёной флуоресценцией (отсюда и название).

Большая Советская Энциклопедия (ФЛ) - i-images-113797183.jpg

Ф. относится к группе триарилметановых (ксантеновых) красителей; окрашивает в жёлтый цвет шёлк и шерсть. Однако в текстильной промышленности его не применяют вследствие малой прочности выкрасок. Ф. используют для изучения путей следования подземных вод, его динатриевую соль (уранин) – как компонент флуоресцирующих составов, изотиоцианатные производные Ф. – в качестве биологических красок для определения антигенов и антител. Практическое значение имеют также некоторые галогензамещённые Ф., например эозины . Получают Ф. конденсацией фталевого ангидрида с резорцином .

Большая Советская Энциклопедия (ФЛ) - i010-001-287681335.jpg

Флуоресцеин.

Флуоресцентная микроскопия

Флуоресце'нтная микроскопи'я, то же, что люминесцентная микроскопия . См. также Микроскоп [метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия)] и Люминесцентный анализ .

Флуоресценция

Флуоресце'нция, флюоресценция (от название минерала флюорит , у которого впервые была обнаружена Ф., и лат. -escent – суффикс, означающий слабое действие), люминесценция , затухающая в течение времени t ~ 10-8 –10-9сек. Разделение люминесценции на Ф. и фосфоресценцию устарело, приобрело условный смысл качественной характеристики длительности люминесценции. По механизму преобразования энергии возбуждения Ф., как правило, является спонтанной люминесценцией, поэтому т определяется временем жизни на возбуждённом уровне.

  В атомных парах наблюдается резонансная Ф., её частота совпадает с частотой возбуждающего излучения (см. Резонансное излучение ). Ф. молекул может происходить в сильно разреженных парах, причём увеличение давления паров или добавление посторонних примесей приводит к тушению Ф. Многие органические вещества (особенно ароматические соединения) обладают Ф. в жидких и твёрдых растворах, а также в кристаллическом состоянии.

  Спектры Ф., её поляризация и кинетика связаны со структурой и симметрией молекул, характером их взаимодействия, зависят от концентрации растворов, вида возбуждения и т.д. С помощью Ф. изучают структуру кристаллов и экситонные процессы в них (см. Спектроскопия кристаллов ), энергетические уровни молекул, их структуру и взаимодействие, процессы миграции энергии возбуждения и др. Ф. используют в люминесцентном анализе , сцинтилляционных счётчиках , минералогических исследованиях.

  Время затухания Ф. измеряют с помощью флуорометров .

27
Перейти на страницу:
Мир литературы