Выбери любимый жанр

Большая Советская Энциклопедия (СП) - Большая Советская Энциклопедия "БСЭ" - Страница 15


Изменить размер шрифта:

15

  На основе монохроматоров строятся однолучевые и двухлучевые спектрометры. Для однолучевых С. п. (рис. 4) характерно последовательное соединение функциональных элементов. В случае измерения спектров пропускания или отражения обычно используется встроенный источник сплошного спектра излучения; для измерения спектров внешних излучателей предусматриваются соответствующие осветители. Для С. п. этого типа соотношение (1) обычно имеет вид:

Большая Советская Энциклопедия (СП) - i-images-120365107.png
, и накладываемые им ограничения на R и Df играют основную роль в инфракрасной (ИК) области, где яркости источников быстро уменьшаются и значения К малы. В видимой и ближней ИК-областях энергетические ограничения играют меньшую роль и рабочие значения R могут приближаться к дифракционному пределу (например, в С. п. с дифракционными решётками к значению
Большая Советская Энциклопедия (СП) - i-images-183071805.png
, где k — кратность дифракции, n = 1/ l — волновое число, L — ширина решётки, j — угол дифракции).

  Двухлучевые схемы характерны для спектрофотометров. Рассмотрим типичные приборы группы 1.

  Спектрометры высокого разрешения для исследований структуры атомных и молекулярных спектров представляют собой стационарные лабораторные установки, работающие по схеме, приведённой на рис. 4. Их длиннофокусные (до 6 м) монохроматоры помещаются в вакуумные корпуса (для устранения атмосферного поглощения) и располагаются в виброзащищённых и термостабилизированных помещениях. В этих приборах используется 2- и 4-кратная дифракция на больших эшелеттах, применяются высокочувствительные охлаждаемые приёмники, что позволяет достигать в спектрах поглощения значений R = 2×105 при l = 3 мкм. Для выявления ещё более тонкой структуры в схему вводят интерферометры Фабри — Перо, в которых сканирование по l в пределах узкого диапазона производится изменением давления в зазоре или изменением величины зазора с помощью пьезодвигателей, а щелевой монохроматор используется лишь для предварительного выбора спектрального диапазона и разделения налагающихся порядков интерференции. Такие приборы называются спектрометрами Фабри — Перо; они позволяют в видимой области получать R » 106.

  Двухлучевые спектрофотометры (сф) В двухлучевых оптических схемах поток от источника разделяется на два пучка — основной и пучок сравнения (референтный). Чаще всего применяется двухлучевая схема «оптического нуля» (рис. 5), представляющая собой систему автоматического регулирования с обратной связью. При равенстве потоков в двух пучках фотометра, попеременно посылаемых модулятором М на входную щель монохроматора Ф, система находится в равновесии, клин К неподвижен. При изменении длины волны пропускание образца меняется и равновесие нарушается — возникает сигнал разбаланса, который усиливается и подаётся на сервомотор, управляющий движением клина и связанным с ним регистратором Р (самописцем). Клин перемещается до тех пор, пока вносимое им ослабление референтного потока не компенсирует ослабления, вносимого образцом О. Диапазон перемещения клина от полного закрытия до полного открытия согласуется со шкалой (от 0 до 100% ) регистратора коэффициента пропускания образца. Обычно СФ записывает спектры на бланках с двумерной шкалой, где абсциссой служат длины волн l или волновые числа n (в -1), ординатой — значения коэффициента пропускания Т (в % ) или оптической плотности D = —lgT (здесь 0 £ Т £  1).

  Многочисленные модели СФ, выпускаемые серийно фирмами многих стран, можно разделить на 3 основных класса: сложные универсальные СФ для научных исследований (R = 103104), приборы среднего класса (R » 103) и простые, «рутинные», СФ (R = 100—300). В СФ 1-го класса предусмотрена автоматическая смена реплик, источников, приёмников, что позволяет охватить широкий спектральный диапазон. Наиболее распространены диапазоны 0,19—3 мкм, 2,5—50 мкм и 20—330 мкм. Конструкции этих СФ обеспечивают широкий выбор значений R, М, Df, скоростей и масштабов регистрации спектров различных объектов. В приборах среднего класса (рис. 6) используемый спектральный диапазон меньше и выбор режимов ограничен. В простых СФ предусматриваются обычно 1—2 стандартных режима с простейшим управлением «пуск — стоп»; это переносные приборы массой 20—40 кг.

  Кроме СФ, работающих по схеме «оптического нуля», существуют прецизионные СФ, построенные по схеме «электрические отношения». В них световые пучки двухлучевого фотометра модулируются различными частотами (или фазами) и отношение потоков определяется в электрической части прибора. В конструкции специальных типов СФ вводят микроскопы (микроспектрофотометры), устройства для исследований спектров флуоресценции (спектрофлуориметры), поляризации (спектрополяриметры), дисперсии показателя преломления (спектрорефрактометры), измерений яркости внешних излучателей по сравнению с эталонным (спектрорадиометры). Автоматические СФ являются основынми приборами для исследований спектральных характеристик веществ и материалов и для абсорбционного спектрального анализа в лабораториях.

  Однолучевые нерегистрирующие спектрофотометры — обычно простые и относительно дешёвые приборы для области 0,19—1,1 мкм, схема которых аналогична приведённой на рис. 4. Нужная длина волны в них устанавливается вручную; образец и эталон, относительно которого измеряется пропускание или отражение, последовательно вводятся в световой пучок. Отсчёт снимается визуально по стрелочному или цифровому прибору. Для увеличения производительности СФ оснащаются устройствами цифропечати и автоматической подачи образцов.

  Спектрометры комбинационного рассеяния могут быть однолучевыми и двухлучевыми. Источником излучения в них обычно служат лазеры, а для наблюдения комбинационных частот (см. Комбинационное рассеяние света) и подавления фона, создаваемого первичным излучением, применяются двойные и тройные монохроматоры, а также голографические дифракционные решётки. Приборы снабжаются устройствами для наблюдения комбинационного рассеяния в жидкостях, кристаллах, порошках под разными углами и «на просвет». В лучших приборах отношение фона к полезному сигналу снижено до 10-15 и комбинационные частоты могут наблюдаться на расстояниях ~ нескольких см-1 от возбуждающей линии.

  Скоростные спектрометры (хроноспектрометры) работают по схеме, приведённой на рис. 4, но, в отличие от предыдущих, их снабжают устройствами быстрого циклического сканирования и широкополосными (Df до 107 гц) приёмно-регистрирующими системами. Для исследований кинетики реакций сканирование ведётся с малой скважностью, которая достигается, например, методом «бегущей щели»: вместо выходной щели в фокальной плоскости устанавливается быстро вращающийся диск с большим числом радиальных прорезей. Таким путём получают до 104 спектров в сек. Если время жизни объекта слишком мало для кинетических исследований, применяют более быстрое сканирование вращающимися зеркалами, это приводит к большой скважности и требует синхронизации начала процесса с моментом прохождения спектра по щели. К скоростным спектрометрам относятся спектровизор СПВ-У (регистрирующий до 500 спектров в сек в видимой области) и скоростной ИК-спектрометр ИКСС-1 (ИКС-20) с регулируемым спектральным диапазоном в пределах интервала 1—6 мкм и скоростями записи от 1 до 100 спектров в сек.

  2. Многоканальные С. п. с пространственным разделением длин волн

  Сканирование в этой группе приборов не применяется, дискретный ряд длин волн (в полихроматорах) или участки непрерывного спектра (в спектрографах) регистрируются одновременно, и оптическая часть строится обычно по схеме, приведённой на рис. 3. Если же вместо системы, создающей угловую дисперсию, применяется набор узкополосных светофильтров, прибор обычно относят к фотометрам.

15
Перейти на страницу:
Мир литературы