Большая Советская Энциклопедия (ОШ) - Большая Советская Энциклопедия "БСЭ" - Страница 2
- Предыдущая
- 2/4
- Следующая
Лит.: Световидов А. Н., Рыбы Чёрного моря, М.— Л., 1964; Жизнь животных, т. 4, ч. 1, М., 1971.

Обыкновенный ошибень.
Ошибок теория
Оши'бок тео'рия, раздел математической статистики, посвященный построению уточнённых выводов о численных значениях приближённо измеренных величин, а также об ошибках (погрешностях) измерений. Повторные измерения одной и той же постоянной величины дают, как правило, различные результаты, так как каждое измерение содержит некоторую ошибку. Различают 3 основных вида ошибок: систематические, грубые и случайные. Систематические ошибки всё время либо преувеличивают, либо преуменьшают результаты измерений и происходят от определённых причин (неправильной установки измерительных приборов, влияния окружающей среды и т. д.), систематически влияющих на измерения и изменяющих их в одном направлении. Оценка систематических ошибок производится с помощью методов, выходящих за пределы математической статистики (см. Наблюдений обработка). Грубые ошибки возникают в результате просчёта, неправильного чтения показаний измерительного прибора и т. п. Результаты измерений, содержащие грубые ошибки, сильно отличаются от других результатов измерений и поэтому часто бывают хорошо заметны. Случайные ошибки происходят от различных случайных причин, действующих при каждом из отдельных измерений непредвиденным образом то в сторону уменьшения, то в сторону увеличения результатов.
О. т. занимается изучением лишь грубых и случайных ошибок. Основные задачи О. т.: разыскание законов распределения случайных ошибок, разыскание оценок (см. Статистические оценки) неизвестных измеряемых величин по результатам измерений, установление погрешностей таких оценок и устранение грубых ошибок.
Пусть в результате n независимых равноточных измерений некоторой неизвестной величины а получены значения x1, x2,..., xn. Разности
d1 = x1 — a,…, dn = xn — a
называются истинными ошибками. В терминах вероятностной О. т. все di трактуются как случайные величины; независимость измерений понимается как взаимная независимость случайных величин d1,..., dn. Равноточность измерений в широком смысле истолковывается как одинаковая распределённость: истинные ошибки равноточных измерений суть одинаково распределённые случайные величины. При этом математическое ожидание случайных ошибок b = Ed1 =...= Еdn называется систематической ошибкой, а разности d1— b,..., dn— b — случайными ошибками. Таким образом, отсутствие систематической ошибки означает, что b = , и в этой ситуации d1,..., dn суть случайные ошибки. Величину



а разности D1 = x1—


D
Опыт показывает, что практически очень часто случайные ошибки di подчиняются распределениям, близким к нормальному (причины этого вскрыты так называемыми предельными теоремами теории вероятностей). В этом случае величина


Если дисперсия s2 отдельных измерений заранее известна, то для её оценки пользуются величиной

(Es2 = s2, т. е. s2 — несмещенная оценка для s2), если случайные ошибки di имеют нормальное распределение, то отношение

подчиняется Стьюдента распределениюс n— 1 степенями свободы. Этим можно воспользоваться для оценки погрешности приближённого равенства а »
Величина (n — 1) s2/s2 при тех же предположениях имеет распределение c2 (см. «Хи-квадрат»распределение) с n— 1 степенями свободы. Это позволяет оценить погрешность приближённого равенства s » s. Можно показать, что относительная погрешность |s — s|Is не будет превышать числа q с вероятностью
w = F (z2, n — 1) — F (z1, n — 1),
где F (z, n — 1) — функция распределения c2,


Лит.: Линник Ю. В., Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений, 2 изд., М., 1962; Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, 2 изд., М., 1968.
Л. Н. Большев.
Ошкалн Отомар Петрович
О'шкалн, Ошкалнс Отомар Петрович [30.3(12.4).1904, Скуенская волость, ныне Цесисского района Латвийской ССР, — 1.9.1947, Рига], советский партийный деятель, один из организаторов партизанского движения в Латвии в годы Великой Отечественной войны 1941—45, Герой Советского Союза (28.6.1945). Член Коммунистической партии с 1939. Родился в семье батрака. Окончил Рижский учительский институт (1925), работал педагогом. С 1921 член комсомола Латвии. За революционную деятельность подвергался арестам и заключению в концлагерь. В 1940, после свержения буржуазного режима, избран депутатом Народного сейма, затем Верховного Совета Латвийской ССР. В 1940—41 2-й секретарь Екабпилсского укома КП (б) Латвии. В 1942—44 комиссар партизанского отряда, затем полка «За Советскую Латвию», член оперативной группы ЦК КП (б) Латвии по организации партизанского движения, комиссар и командир латышской партизанской бригады. С 1944 1-й секретарь Рижского укома партии. С 1946 министр технических культур Латвийской ССР. Депутат Верховного Совета СССР 2-го созыва. Награжден орденом Ленина, орденом Отечественной войны 2-й степени, а также медалями.
- Предыдущая
- 2/4
- Следующая