Большая Советская Энциклопедия (ЖИ) - Большая Советская Энциклопедия "БСЭ" - Страница 20
- Предыдущая
- 20/51
- Следующая
Хранят и перевозят Ж. у., содержащие свободный аммиак, в герметически закрытой таре, безводный аммиак в стальных цистернах, выдерживающих высокое давление его паров — до 2 Мн/м2 (20 атм); для аммиачной воды пригодны цистерны из-под тракторного горючего, для аммиакатов нужна тара из нержавеющей стали, алюминия, пластмасс или с антикоррозийным покрытием. Азотные Ж. у. значительно дешевле твёрдых, меньше и затраты труда на их внесение.
Сложные Ж. у. — водные растворы, содержащие до 27% азота, фосфора и калия. При введении стабилизирующих добавок, например коллоидной глины, бентонита, предохраняющих раствор от кристаллизации, концентрацию питательных веществ в удобрении можно увеличить до 40%. Сложные Ж. у. не содержат свободного аммиака, поэтому их можно вносить поверхностно под вспашку, культивацию или боронование и в рядки при посеве.
Лит.: Баранов П. А., Кореньков Д. А., Павловский И. В., Жидкие азотные удобрения, М., 1961; Баранов П. А., Жидкие азотные удобрения, М., 1966; Справочная книга по химизации сельского хозяйства, под ред. В. М. Борисова, М., 1969.
П. А. Баранов.
Жидкое котельное топливо
Жи'дкое коте'льное то'пливо, топливо, применяемое в стационарных котельных установках, на морских и речных судах и в промышленных печах различного назначения. В зависимости от вида сырья Ж. к. т. бывают: нефтяные, получаемые из нефтяных остатков (см. Мазут); сланцевые, состоящие из смол полукоксования сланцев, и угольные, представляющие собой тяжёлые фракции смол полукоксования углей. Топлива различаются по вязкости, содержанию серы, золы, температуре застывания, теплоте сгорания и др. свойствам. Большинство Ж. к. т. составляют нефтяные топлива, которые, в свою очередь, подразделяются по содержанию серы (в %) на малосернистые (0,5), сернистые (2) и высокосернистые (до 3,5). Низкое содержание серы особенно важно для топлив, используемых в промышленных печах (мартены и др.). Преимущество Ж. к. т. перед твёрдыми определяется их высокой теплотой сгорания — 37—42 Мдж/кг (9000—10 000 ккал/кг), удобством транспортировки и хранения, простотой подачи топлива в топку, точностью регулировки термического режима установки и др. В этом отношении Ж. к. т. уступает лишь газообразному топливу.
Лит.: Геллер З. И., Мазут как топливо, М., 1965; Товарные нефтепродукты, их свойства и применение, М., 1971.
Жидкое стекло
Жи'дкое стекло', водный раствор силиката натрия или калия; см. Стекло.
Жидкостно-абразивная обработка
Жи'дкостно-абрази'вная обрабо'тка, механическая обработка с целью очистки, шлифования, полирования деталей, а также упрочнения их поверхностей. Ж.-а. о. осуществляется в специальных установках (рис.), в которых на детали воздействуют растворы, составленные из антикоррозионных жидкостей и абразивных порошков, гранул, мелких осколков абразивных и др. материалов. Применяют прокачные, ультразвуковые, вибрационные и др. установки для очистки деталей от заусенцев, окалины, нагара; галтовочные, виброполировальные и другие установки для шлифования, полирования и упрочнения фасонных наружных и внутренних поверхностей, Ж.-а. о. не повышает точности обработки, а лишь улучшает качество поверхности, уменьшая её микрошероховатость. Наиболее эффективно применение этого метода для отделки фасонных поверхностей.

Схема установки для жидкостно-абразивного полирования: 1 — бак с обрабатывающим раствором; 2 — насос; 3 — форсунка; 4 — камера для обрабатываемых деталей; 5 — деталь.
Жидкостный лазер
Жи'дкостный ла'зер, лазер с жидким активным веществом. Преимущество Ж. л. — возможность циркуляции жидкости с целью её охлаждения. Это позволяет получить большие энергии и мощности излучения в импульсном и непрерывном режимах (см. Лазер).
В первых Ж. л. использовались растворы редкоземельных хелатов (см. Хелатные соединения). Они пока не нашли применения вследствие малости достижимой энергии и недостаточной химической стойкости хелатов. Ж. л., работающие на неорганических активных жидкостях, предложенных и синтезированных в СССР, обладают большими импульсными энергиями при значительной средней мощности. При этом Ж. л. генерируют излучение с узким спектром частот.
Интересными особенностями обладают Ж. л., работающие на растворах органических красителей. Широкие спектральные линии люминесценции органических красителей позволяют осуществить Ж. л. с непрерывной перестройкой длин волн излучения в диапазоне порядка несколько сотен

Лит. см. при ст. Лазер.
М. Е. Жаботинский.
Жидкостный манометр
Жи'дкостный мано'метр, жидкостный вакуумметр, прибор для измерения давления газов. В Ж. м. давление газа определяется по перемещению столба жидкости в U-oбразной трубке (см. Вакуумметрия).
Жидкостный ракетный двигатель
Жи'дкостный раке'тный дви'гатель (ЖРД), реактивный двигатель, работающий на жидком ракетном топливе. Схема ЖРД разработана К. Э. Циолковским в 1903, доказавшим возможность использования ЖРД для межпланетных полётов. Предложенные им принципы конструктивного решения ЖРД были дополнены Ю. В. Кондратюком и сохранились в современных двигателях. Первые ЖРД были разработаны и испытаны американским учёным Р. Годдардом в 1923 и немецким учёным Г. Обертом в 1929. Над созданием ЖРД за рубежом работали французским учёный Р. Эно-Пельтри, немецкие учёные Э. Зенгер, Г. Вальтер и др. Первые отечественные ЖРД: ОРМ (опытный ракетный мотор) и ОРМ-1 построены и испытаны в Газодинамической лаборатории (ГДЛ) в 1930—1931 В. П. Глушко; ОР-2 и двигатель-10 разработаны в Группе изучения реактивного движения Ф. А. Цандером и испытаны в 1932—33.
В 30-е гг. в СССР было создано семейство ЖРД ОРМ-1 — ОРМ-102. Эти ЖРД служили для отработки элементов конструкций, обеспечивающих зажигание, запуск, работу на режиме на различных жидких топливах, а также для практического использования в летательных аппаратах (например, ОРМ-50, ОРМ-52 и др.).
С 40-х гг. в СССР и за рубежом разработано большое количество типов ЖРД, нашедших широкое применение на ракетах различного назначения и на некоторых самолётах. В 1942 в Германии были начаты лётные испытания ракеты Фау-2 В. фон Брауна с ЖРД тягой 245 кн конструкции В. Тиля. В 1943—46 на самолётах В. М. Петлякова, С. А. Лавочкина, А. С. Яковлева и П. О. Сухого были проведены лётные испытания вспомогательных авиационных ЖРД, созданных в Опытно-конструкторском бюро, выросшем из ГДЛ (ГДЛ-ОКБ). В СССР в начале 50-х гг. полёты совершали баллистические ракеты, ЖРД которых обладали значительно большей тягой. В дальнейшем под руководством Глушко, А. М. Исаева, С. А. Косберга и др. советских конструкторов были разработаны и созданы двигатели (см. рис. 1), обеспечившие полёты первых советских искусственных спутников Земли, искусственных спутников Солнца, Луны, Марса, автоматических станций на Луну, Венеру и Марс, космических кораблей, всех геофизических и др. ракет в 1949—72. ЖРД получили широкое развитие в США, Великобритании, Франции и др. странах.
- Предыдущая
- 20/51
- Следующая